Program Handout for B.Sc. Biotechnology

(Revised w.e.f. 2020-2021)

Department of Biosciences Faculty of Science Integral University, Lucknow

INTEGRAL UNIVERSITY LUCKNOW DEPARTMENT OF BIOSCIENCES **B.Sc. Biotechnology**

PROGRAM EDUCATIONAL OBJECTIVES (PEO's)

- Bachelor course in biotechnology offers the synergism of basic concepts of biology, biotechnology, molecular biology, genomics, Recombinant DNA technology, microbiology, biochemistry and bioinformatics with technological applications.
- The main objective of this degree course is to produce graduates with enhanced skills, knowledge and research aptitude to carry out higher studies, entrepreneurship or research and development in the various health, research and industrial areas.
- Develop proficiency in application of current aspects of biotechnology, molecular biology, Recombinant DNA technology, bioinformatics and genomics.
- Students will be able to use state of the art techniques relevant to academia and industry, generic skills and global competencies including knowledge and skills that enable the students to undertake further studies in the field of biotechnology, molecular biology, Recombinant DNA technology, genomics, microbiology, biochemistry or any other related field.
- Imparting an education that includes communication skills, the ability to work in a team with leadership quality, devoted to societal problems with an ethical attitude.

PROGRAM OUTCOMES (PO's)

- [PO.1] **Critical Thinking** Students will demonstrate an understanding of major concepts in all disciplines of biology, biochemistry, biotechnology microbiology and bioinformatics. Understand the basic concepts, fundamental principles, and the scientific theories related to various scientific phenomena and their relevancies in the day-to-day life.
- [PO.2] Effective Communication- Development of various communication skills such as reading, listening, speaking, etc., which will help in expressing ideas and views clearly and effectively.
- [PO.3] **Social Interaction** Development of scientific outlook not only with respect to science subjects but also in all aspects related to life.
- [PO.4] Effective Citizenship- Imbibe moral and social values in personal and social life leading to highly cultured and civilized personality.
- [PO.5] Ethics- Follow the ethical principles and responsibilities to serve the society.
- [PO.6] **Environment and Sustainability** Understand the issues of environmental contexts and sustainable development.
- [PO.7] **Self-directed and Lifelong learning** Students will be capable of self-paced and self-directed learning aimed at personal development and for improving knowledge/skill development.

PROGRAM SPECIFIC OUTCOMES (PSO's)

- [PSO.1] The course offers basic foundation in biotechnology that enables students to understand concepts in biochemistry, molecular biology, microbiology, genetic engineering and industrial technology.
- [PSO.2] Students will be able to design, execute, record and analyse the results of experiments in field of molecular biology, genomics, Recombinant DNA technology, biochemistry, microbiology and genetic engineering enabling them to work effectively in a group in the classroom, laboratory, industries and field-based situations.
- [PSO.3] Prepares the students for immediate entry to the workplace with sound theoretical, experimental knowledge in the area of health and pharmaceuticals, biochemicals, biofuels, environment related, food and dairy, cosmetics, biopolymers and related multidisciplinary fields.
- [PSO.4] Become efficient in using standard operating procedures and will be well versed with the regulations for safe handling and use of chemicals as well as IPR and biosafety issues related to experiments in field of biochemistry, microbiology and genetic engineering.

EVALUATION SCHEME (CBCS) B.Sc. Biotechnology Semester-I

				¥											Att	ribu	utes		
Course Code	Course Title	Type of Paper		Periods/Week			: I	Evaluation Scheme		Max. Marks	Credits	Total Credit	Employability	Entrepreneurship		Gender	Environment & sustainability	Human values	Professional ethics
			L	Т	Ρ	UE	ТА	Total	ESE				ШШ	Ent	Skill	Ger	Env sus	Hur	Pro
	Essential Professional Communication	Foundation	3	1	0	40	20	60	40	100	3:1:0	4	\checkmark	\checkmark	\checkmark			.1	\checkmark
MT106	Mathematics	Foundation	3	1	0	40	20	60	40	100	3:1:0	4			\checkmark				
CS109	Concept of Computers	Foundation	3	1	0	40	20	60	40	100	3:1:0	4			\checkmark		\checkmark		\checkmark
CH112		Core	3	1	0	40	20	60	40	100	3:1:0	4			\checkmark				
BS101	Plant Sciences	Core	3	1	0	40	20	60	40	100	3:1:0	4					\checkmark		
CH113	Chemistry Lab-I	Practical	0	0	6	40	20	60	40	100	0:0:3	3			\checkmark				
BS102	Plant Sciences Lab	Practical	0	0	6	40	20	60	40	100	0:0:3	3			\checkmark				
	Tc	•					700		26	•	•								

EVALUATION SCHEME (CBCS) B.Sc. Biotechnology Semester-II

				¥											Att	rib	utes		
Course Code	Course Title	Type of Paper		Periods/Week			:	Evaluation Scheme		Max. Marks	Credits	Total Credit	Employability	Entrepreneurship		Gender	Environment & sustainability	Human values	Professional ethics
			L	Т	Ρ	UE	TA	Total	ESE				Em	Ent	Skill	Gel	Env sus	Hui	Profes ethics
	Fundamentals of Environmental Studies	Foundation	3	1	0	40	20	60	40	100	3:1:0	4					\checkmark		\checkmark
CH114	Fundamental of Organic Chemistry	Core	3	1	0	40	20	60	40	100	3:1:0	4	\checkmark		\checkmark				
BS111	Animal Science	Core	3	1	0	40	20	60	40	100	3:1:0	4	\checkmark		\checkmark		\checkmark		
BS112	Fundamentals of Biochemistry	Core	3	1	0	40	20	60	40	100	3:1:0	4							
BS113	Fundamental of Microbiology	Core	3	1	0	40	20	60	40	100	3:1:0	4	\checkmark		\checkmark		\checkmark		
	Chemistry Lab-II	Practical	0	0	6	40	20	60	40	100	0:0:3	3							
BS114	Animal Sciences lab.	Practical	0	0	6	40	20	60	40	100	0:0:3	3	\checkmark		\checkmark		\checkmark		
	То	tal								700		26							

EVALUATION SCHEME (CBCS) B.Sc. Biotechnology Semester-III

				¥											Att	ribu	utes		
Course Code	Course Title	Type of Paper		Periods/Week				Evaluation Scheme		Max. Marks	Credits	Total Credit	Employability	Entrepreneurship		Gender	Environment & sustainability	Human values	Professional ethics
			L	Т	Ρ	UE	ТА	Total	ESE				Em	Ent	Skill	Gel	Env	Hui	Profes ethics
CH215	Fundamentals of Physical Chemistry	Core	3	1	0	40	20	60	40	100	3:1:0	4	\checkmark		\checkmark				
BS201	Metabolism	Core	3	1	0	40	20	60	40	100	3:1:0	4			\checkmark				
DUCUL	Biophysical Chemistry	Core	3	1	0	40	20	60	40	100	3:1:0	4	\checkmark	\checkmark	\checkmark				
BS203	Cell Biology & Genetics	Core	3	1	0	40	20	60	40	100	3:1:0	4							
BS204	IPR & Biosafety	Core	3	1	0	40	20	60	40	100	3:1:0	4	\checkmark		\checkmark			\checkmark	\checkmark
BS205	Microbiology Lab	Practical	0	0	6	40	20	60	40	100	0:0:3	3	\checkmark	\checkmark	\checkmark		\checkmark		
BS206	Cell Biology & Genetics Lab	Practical	0	0	6	40	20	60	40	100	0:0:3	3	\checkmark		\checkmark				
	Το				700		26												

EVALUATION SCHEME (CBCS) B.Sc. Biotechnology Semester-IV

					¥											Att	ribu	utes		
Course Code	Course Title		Type of Paper		Periods/Week				Evaluation Scheme		Max. Marks	Credits	Total Credit	Employability	Entrepreneurship	=		Environment & sustainability	Human values	Professional ethics
				L	Т	Ρ	UE	TA	Total	ESE				Em	Ent	Skill	Ge	En	Hu	Profe ethic:
BS211	Immunology		Core	3	1	0	40	20	60	40	100	3:1:0	4							
BS212	Molecular Biology		Core	3	1	0	40	20	60	40	100	3:1:0	4							
BS213	Fundamentals of Biotechnology	Environmental	Core	3	1	0	40	20	60	40	100	3:1:0	4	\checkmark	\checkmark	\checkmark		\checkmark		
BS214	Industrial Biotechnology		Core	3	1	0	40	20	60	40	100	3:1:0	4	\checkmark	\checkmark	\checkmark				
BS215	Food Biotechnology		Core	3	1	0	40	20	60	40	100	3:1:0	4	\checkmark	\checkmark			\checkmark		
BS216	Immunology Lab		Practical	0	0	6	40	20	60	40	100	0:0:3	3	\checkmark	\checkmark	\checkmark				
BS217	Industrial and Biotechnology Lab	Environmental	Practical	0	0	6	40	20	60	40	100	0:0:3	3	\checkmark	\checkmark	\checkmark				
		Tot	tal								700		26							

EVALUATION SCHEME (CBCS) B.Sc. Biotechnology Semester-V

				¥											Att	ribu	utes		
Course Code	Course Title	Type of Paper		Periods/Week				Evaluation Scheme		Max. Marks	Credits	Total Credit	Employability	Entrepreneurship	I	Gender	Environment & sustainability	Human values	Professional ethics
			L	Т	Ρ	UE	TA	Total	ESE				Ш	Ent	Skill	Gel	Env sus	Hu	Profe ethic:
BS301	IAnimal Biotechnology	Core	3	1	0	40	20	60	40	100	3:1:0	4	\checkmark		\checkmark				
BS302	Plant Biotechnology	Core	3	1	0	40	20	60	40	100	3:1:0	4	\checkmark	\checkmark					
BS303	Genetic Engineering	Core	3	1	0	40	20	60	40	100	3:1:0	4	\checkmark		\checkmark		\checkmark		
BS304	Medical Biotechnology	Core	3	1	0	40	20	60	40	100	3:1:0	4	\checkmark		\checkmark		\checkmark		
	Electives: (Any one of the following) Genomics, Proteomics and	Elective																	
	Metabolomics		3	1	0	40	20	60	40	100	3:1:0	4		V			N N	J	N
BS306	Applied Biotechnology												\checkmark	\checkmark	\checkmark		v	v	v
BS307	Tissue culture Lab	Practical	0	0	6	40	20	60	40	100	0:0:3	3	\checkmark						
BS308	Genetic Engineering Lab	Practical	0	0	6	40	20	60	40	100	0:0:3	3	\checkmark	\checkmark					

700

EVALUATION SCHEME (CBCS) B.Sc. Biotechnology Semester-VI

				¥											Att	ribu	utes		
Course Code	Course Title	Type of Paper		Periods/Week				Evaluation Scheme		Max. Marks	Credits	Total Credit	Employability	Entrepreneurshi D	Skill development		Environment & sustainability	Human values	Professional ethics
			L	Τ	Ρ	UE	TA	Total	ESE				Εu	рп П	Ski	Ge	En' su:	ηu	Pro
BS311	Bioinformatics	Core	3	1	0	40	20	60	40	100	3:1:0	4		\checkmark	\checkmark				
	Elective courses (Any one of the following)	Elective									3:1:0	4							
BS312 BM337	Bionanotechnology Entrepreneurship Development		3	1	0	40	20	60	40	100			\checkmark					\checkmark	\checkmark
BS314	Bioinformatics Lab	Practical	0	0	4	40	20	60	40	100	0:0:2	2							
BS315	Project & Training* (3 months)		0	0	4					300	0:0:4	4			\checkmark				\checkmark
BS316	Educational Tour (8-10 days)		0	0	2					100	0:0:2	2							
	-	Total								700		16							

* The Evaluation scheme for the Project Work

	Course Code	Dissertation	Presentation	Viva/Discussion	Total
Project	BS315	200	50	50	300

Note: The students of B.Sc. Biotechnology have to undergo the educational/Industrial tour in industry/research institution for practical awareness at the end of 6th semester

INTEGRAL UNIVERSITY LUCKNOW

B.Sc. Biotechnology

Syllabi of all courses with CO, CO-PO and CO-PSO mapping

		B. Sc. Bl	OTECHNOLOGY	1 st year/ 2	1 st semeste	r					
1. Name of the	Departn	nent: Biosciences									
2. Course Nan	ne	PLANT SCIENCES				L		Т		F	>
3. Course Cod	le	BS101	T			3		1		()
4. Type of Cour	rse (use tic	ck mark)	Core (<i>J</i>)		Foundation	Course () I	Departi	men	al Elect	ive ()
5. Pre-requisite	· •	10+2 with Biology	6. Frequency (use	tick marks)	Even ()	Odd () Eitl	her Sen	n ()	Every S	em ()
	r of Lectu	res, Tutorials, Practical									
Lectures = 30			Tutorials = 10		Practical = 00						
origin of life and and plant grow	d evolutio th.	n, diversity in plants, st	s course is to develop th ructure and functioning								
9. COURSE OUT After the successf			l develop following attrib	utes:							
COURSE OUTCOME (CO)			AT	TRIBUTES							
CO1	Develop	and understand the co	ncept of origin of life an	d evolution							
CO2	To comp	rehend the diversity of	plant forms as Algae, b	ryophytes, p	oteridophytes, g	gymnos	berm	is and	angi	osperm	S
CO3	To have	basic knowledge about	the structure and organ	nisation of p	lant cells and t	issues					
CO4	To under	rstand the basic structu	ral organisation, morph	ology and a	natomy of plan	ts					
CO5	To have	knowledge about the p	hysiological functions ir	n plants.							
10. Unit wise de	tailed con	ntent									
Unit-1	Numbe	er of lectures = 08	Title of the unit:	Origin of lit	fe: Origin of li	fe, Evo	lutio	n			
Darwinism, Lan Animalia.	narckism,	Classification of living	organisms: Whittaker's	five-kingdor	n concept: Mor	nera, Pr	otista	a, Fung	gi, P	lantae a	nd
Unit-2		er of lectures = 08	Title of the unit:								
		d objectives of taxonom erms, Angiosperms.	ny, General characters a	and econom	ic aspects of A	lgae, Fu	ungi,	Bryop	hyte	S,	
Unit-3	Number	of lectures = 08	Title of the unit:	Cellular or	ganization						
Structure and fu xylem and phloe		animal and plant cells,	Types of plant cells: pa	arenchyma,	collenchyma ai	nd scler	ench	iyma, I	Plan	t tissues	::
Unit-4	Numbe	er of lectures = 08	Title of the unit:	Organiza	tion of plant b	ody					
Formation, See	d Physiol	logy: Dormancy, breaki	r as a modified shoot, ng of dormancy, Germi condary growth and ann	nation, Mod							
Unit-5	Numbe	er of lectures = 08	Title of the unit:	-Plant ph							
	t growth h	normones and their mo	of sap, Absorption of mi de of action, Photomorp								and
11. CO-PO mapp	oing										
COs			Attributes				PO2	PO3 P	O4]	PO5 PO	6 PO7
<u>^</u>		and the concept of origin				3	1			1	1
CO2 To compreh angiosperm		iversity of plant forms as .	Algae, bryophytes, pterido	ophytes, gymn	nosperms and	3	1			1	1
		0	nd organization of plant c		es	3	1			1	1
			n, morphology and anator	ny of plants		3	1			1	1
CO5 To have kno	owledge al	bout the physiological fur	actions in plants.			3	1			1	1

3: Strong contribution, 2: Average contribution , 1: Low contribution

12. Books recommended

- 1. Biology PH Raven & G.B Johnson
- 2. Biological science DJ Taylor NPO Green GW Stout
- 3. A textbook of Botany S.N Pandey, P.S Trivedi
- 4. Plant Physiology by Taiz & Zeiger.
- 5. Devlin R.M. Fundamentals of Plant Physiology (Mac. Millan)
- 6. Malik C.P. Plant Physiology, Kalyani Publishers
- 7. Bold H.C. The Plant Kingdom, Prentice -Hall India
- 8. Dutta A.C. A Class book of Botany, Oxford University Press

Course Articulation Matrix: (Mapping of COs with POs and PSOs)

PO-PSO	5	02)3	54)5	96	70	PS01	OS2	03	PSO4
СО	P01	P02	PO3	P04	PO5	PO6	P07	PS	РО	PS	PS
CO1	3	1				1	1	3			
CO2	3	1				1	1	3			
CO3	3	1				1	1	3			
CO4	3	1				1	1	3			
CO5	3	1				1	1	3	2		
BS101	3	1				1	1	3	2		

1. Name	e of the Departmen	nt: Chemistry										
2. Cours	e Name	FUNDAMENTALS OF INORGA	ANIC CHEMISTRY		L		-	г		1	P	
3. Cours	e Code	CH112			3		-	1		(0	
4. Type	of Course (use tick	mark)			Core ()	DE ()		FC	(√)	
5. Pre-re	equisite (if any)	10+2 with Chemistry	6. Frequency (use tick marks)	Even ()	Odd (\checkmark)	Eithe	r Sem ()		Every Se	em ()
7. Total	Number of Lecture	es, Tutorials, Practicals										
		ures = 30	Tutorials = 10					ctical =				
			arn about how to classify elements in se reactions, naming and stereochen	•	• •	s, vario	us bondi	ng para	meters	and hov	v can p	redict
9. COURS	SE OUTCOMES (CO)): After the successful course co	ompletion, learners will develop follo	owing attribute	es:							
COURS	E OUTCOME (CO)			ATTRIBUTES								
	01	of various elements.	riodic table to describe trends in ator									
	CO2	Select the type of bonding an different parameters.	nd their chemical and physical prop	perties includin	ng electronega	ativities	, bond c	listance	s and I	oond en	ergies	using
	CO3	Predict the geometry and shap	e of molecules by applying VB & VSE	PR theories.								
	CO4	Identify acid/base reactions, p	H determination.									
	CO5		plexes and explain the stereochemis	stry.								
10. Unit	wise detailed cont											
Unit-1		Number of lectures = 08	Title of the unit: Periodic Propert									
	uction to modern p nielding effect.	eriodic table, periodicity in pro	perties of elements: Atomic and ionio	c radii, ionizatio	on energy, ele	ctron A	ffinity, el	ectrone	gativity	, effecti	ve nucl	ear
Unit-2	neiding effect.	Number of lectures =08	Title of the unit: Chemical Bonding	z-l								
	ion, causes of chem		eory of valency, general characteristi	-	lent bond, cov	alent b	ond, coo	rdinate	bond, i	netallic	bondin	g and
hydrogen	bonding.											_
Unit-3		Number of lectures = 08	Title of the unit: Chemical Bonding									
		simple molecules and ions. Vale lear diatomic molecules.	ence Shell Electron Pair Repulsion (VS	SEPR) theory to	NH ₃ , SF ₄ , ClF ₃	, ICl₄- a	nd H ₂ O. I	Molecul	ar Orbi	tal theor	y for	
Unit-4		Number of lectures = 08	Title of the unit: Acid and Bases									
Elementar and the ef	ry idea of Bronsted ffect of substitutes	 Lowry and Lewis concept of ac and the solvent on them. 	ids and bases (Proton-donor accepto	or and electron	donor accept	or syste	ms), Rela	ative str	engths	of Lewis	acids	bases
Unit-5		Number of lectures = 08	Title of the unit: Coordination Con	•								
		•	rdination theory, IUPAC nomencla	ture of coordin	ation compou	nds, Dis	scussion	ofinner	andout	er orbita	al comp	lexes,
	n (structural, optica	l and geometrical).										
	D mapping											_
COs	luctific poriodia lou		Attributes	and make prod	PO1	PO2	PO3	PO4	PO5	PO6	PO	/
01	about the physical	and chemical behavior of vario			3	2	1	1	1	1	3	
CO2	distances and bond	l energies using different paran		negativities, bo	3	2	1	1	2	1	3	
CO3	Predict the geomet	ry and shape of molecules by a	pplying VB & VSEPR theories.		3	1	1	1	1	1	2	
		reactions, pH determination.			3	1	2	1	1	1	2	
CO5		ames of complexes and explain	•		3	1	1	2	1	1	3	;
		<u> </u>	ge contribution , 1 Low contribution	1								
		f-learning / E-learning compon										
			/mhrd/ict/text/104101090/lec1.pdf /mhrd/ict/text/104106096/lec9.pdf									
			/structure-of-matter/chemical-bondi	ing/								
4.	https://www.you	tube.com/watch?v=ZNo6gfCAg	WE									
5. 13. Books	https://nptel.ac.ir s recommended:	n/content/syllabus_pdf/104105	ouss.pat									
		emistry Vol-I & II, Satva Prakasł	n, G.D. Tuli, S.K. Basu, R.D. Madan, S.	Chand & Co. Lt	d.							
2. Test	book of Inorganic	Chemistry, P.L. Soni, Sultan Cha	ind & Sons									
		organic Chemistry, Madan & Tu										
		nistry, J.D. Lee, Black Well Scien zanic Chemistry, Wahid U Malik	ices c, GD Tuli, RD Madan, S Chand Publica	ation								
3. 3010												

B. Sc. BIOTECHNOLO	DGY 1 st year/ 1 st	semester												
1.Name of the Departm	•													
2.Course Name	PLANT SCIENC	CES LAB		L		Т			Р					
3.Course Code	BS102			0		0			6					
4.Type of Course (use t	ick mark)	Core(J)	Foundat	ion Course ()	D)eparti	nental	Elect	tive ()				
5.Pre-requisite (if any)	10+2 with biology	6.Frequency (use tick marks)	Even()	Odd (/)	Eith	ner Sei	n ()	Every	y Sem	()				
7.TotalNumberofLectu														
Lectures		Tutorials=00					actical							
	•	ve of this course is to d	•	understandi	ng of tl	he str	ucture	and fu	unctic	oning o	of Plant			
Cells, tissues and morp	•••••••••••••••••••••••••••••••••••••••	and physiology of plant	s.											
9. COURSE OUTCOME After the successful course		ners will develop followin	ng attributes	:										
COURSE OUTCOME			ATTR	IBUTES										
(CO)														
		dge of anatomy of dicc												
CO2	Gain knowledge at	in knowledge about the structure of a flower and various types of inflorescence.												
CO3	Know about the dif	ferent types of seeds a	nd fruit											
CO4 (Set basic knowled	ge of the structure of b	ryophyte, p	teridophyte,	gymno	osperi	n							
	dentify algae and f	fungi and have basic ki	nowledge o	of their struct	ure									
10. Syllabus														
—		of dicot and monocot												
Exp-02	ransverse section	of dicot and monocot	leaves											
Exp-03	ransverse section	of dicot and monocot	roots											
Exp-04	lorphology study o	of flower parts, inflores	cence, see	d, fruit types										
Exp-05 S	tudy of one exam	ple each of bryophyte,	pteridophy	te, gymnosp	erm									
Exp-06	tudy of one exam	ple each of algae and f	ungi											
11. CO-PO mapping														
COs		Attributes]	PO1 1	PO2	PO3	PO4	PO5	PO6	PO7			
		of dicots and monocots			3	3	1			1	2			
		of a flower and various ty	pes of inflo	rescence.	3	3	1			1	2			
	ne different types of				3	3	1			1	2			
		ire of bryophyte, pteridop		osperm	3	3	1			1	2			
CO5 <i>identify algae</i>	ana fungi and have	basic knowledge of their	structure		3	3	1			1	2			

3: Strong contribution, 2: Average contribution , 1: Low contribution

Course Articulation Matrix: (Mapping of COs with POs and PSOs)

			···· (·····	P					/		
PO-PSO	P01	PO2	PO3	P04	PO5	P06	PO7	S01	OS2	SO3	S04
СО								д.	д.	<u>م</u>	Ъ.
CO1	3	3	1			1	2	3		2	
CO2	3	3	1			1	2	3		2	
CO3	3	3	1			1	2	3		2	
CO4	3	3	1			1	2	3		2	
CO5	3	3	1			1	2	3		2	
BS102	3	3	1			1	2	3		2	

1. Name	e of the Departmen	nt: Chemistry											
	e Name	FUNDAMENTALS OF ORGAN	IC CH	EMISTRY		L			Г		P		_
3. Cours	e Code	CH114				3		1	L		0		
	of Course (use tick	mark)				Core ()	DE ()		FC (√)	
5. Pre-r	equisite (if any)	10+2 with Chemistry	6.	Frequency (use tick marks)	Even (\checkmark)	Odd ()		Eithe	r Sem ()	E	Every Se	m ()
7. Total	Number of Lecture	es, Tutorials, Practicals											
	Lectu	ures = 30		Tutorials = 10				Pract	tical = N	il			
		learn about IUPAC rules for the ecific name reactions	e nom	enclature of various organic cor	mpounds, pred	iction of geom	etry, ste	ereoche	mistry a	nd med	chanism	s of	
9. COUR	SE OUTCOMES (CO): After the successful course c	omple	tion, learners will develop follo	owing attribut	es:							
COURS	E OUTCOME (CO)				ATTRIBUTES								_
	CO1	Understand different organic o scientifically (IUPAC)	compo	ounds with respect to the funct	ional groups ar	nd become elig	ible to v	vrite the	e name	of the c	organic c	ompour	ıds
	CO2		ion ge	eometry of molecule and variou	s electron disn	lacement effe	ts						
				· · · · · · · · · · · · · · · · · · ·									
	CO3	An understanding of nucleoph	illes, e	lectrophiles including the predi	ction of mecha	inisms for vario	ous orga	inic read	tions.				
	CO4			ic compounds by applying varia									
40.00	CO5		ability	of an organic molecule based o	on structure, in	ciuaing contori	nation a	and ster	eochem	iistry			
	wise detailed cont												
Unit-1		Number of lectures = 08		e of the unit: Classification of	o 1								
		npounds, Functional groups, He	omolo	ogous series, IUPAC recommend	lations for nam	ing simple alip	hatic, a	licyclic a	and aror	natic co	ompoun	ds,	
	ional compounds, F	Heterocyclic compounds.											
Unit-2		Number of lectures =08		e of the unit: Basic concepts of		-						-	
		of carbon, geometry of molecule ric, resonance, hyperconjugation			lene and benze	ene, Factors af	ecting o	covalent	bond; l	Electror	n displac	ement	
Unit-3		Number of lectures = 08		e of the unit: Mechanisms of O	rganic Reactio	ns							
Reaction	intermediates (Cark	ocation, carbanion and free ra			-		s). Type	s of Org	anic Re	actions	: Substit	ution	_
		eophillic (mechanims of nucleo			•								
radicals, A	Addition reactions;	electrophillic, nucleophillic and	l free ı	radical, Elimination reactions; E	1& E2.								
Unit-4		Number of lectures = 08	Title	e of the unit: Name Reactions									
Aldol Con	densation, Cannizza	aro reaction, Beckmann rearrar	ngeme	ent, Hoffmann rearrangement,	Diels-Alder rea	ction, Clemme	nsen re	duction,	Wolff I	Kishner	reductio	on	
Unit-5		Number of lectures = 08	Title	e of the unit: Stereochemistry									
		of isomerism; structural, geom	netrica	l and optical isomerism, E and	Z system of noi	meclature, con	formati	onal ana	alysis of	n-buta	ne.		
11. CO-PO	D mapping												
COs			Attrib			PO1	PO2	PO3	PO4	PO5	PO6	PO7	
		ent organic compounds with res ganic compounds scientifically			come eligible t	o write 3	2	1	1	1	1	2	
CO2	Predict the state of	f hybridization, geometry of mo	olecule	e and various electron displacer	ment effects.	3	2	1	1	2	1	2	
CO3	An understanding or reactions.	of nucleophiles, electrophiles in	ncludi	ng the prediction of mechanisr	ns for various	organic 2	1	1	2	1	1	2	
CO4	Design the synthes	is of newer organic compounds	s by al	oplying various name reactions.		3	1	2	1	1	1	2	
1 105	Interpret the reacti stereochemistry	ivity and stability of an organic	moleo	cule based on structure, includi	ng conformatio	on and 3	1	1	2	1	1	1	
		Strong contribution, 2 Averag		tribution , 1 Low contribution									
		f-learning / E-learning compon	nent										
	//nptel.ac.in/cours												
	//nptel.ac.in/cours												
	<pre>//nptel.ac.in/cours //nptel.ac.in/cours</pre>												
	//nptel.ac.in/cours												
-	s recommended:												
		mistry, Bahl & Bahl, S. Chand &	Co. Lt	d.									
	anic Chemistry Vol.												
	•	nic Chemistry, Nafis Haider, S. C											ľ
	•	Chemistry, Bahl & Bahl, S. Char											
5. Orga	anic Chemistry Vol.	I, II & III, Dr. Jagdamba Singh, L	.D.S. Y	adav, Pragati Prakashan									

	B.	Sc. BIOT	FECHNOLOGY 1 st year	/ 2 nd semester	r							
1. Name of the De	partment: Biosciences											
2. Course Name	ANIMAL SCIEN	ICE			L	r	Г		Р			
3. Course Code	BS111				3		l		0			
4. Type of Course	(use tick mark)		Core (<i>I</i>)	Foundation	n Course ()	Depa	rtment	tal Ele	ectiv	e ()		
5. Pre-requisite (i	any) 10+2 with Biology	/	6. Frequency (use tick mark	$\mathbf{S} = \mathbf{Even} \left(\boldsymbol{J} \right)$	Odd ()	Either Se	em ()	Ever	y Se	em ()		
7. Total Number of	of Lectures, Tutorials, Pra	cticals										
Lectures = 30			Tutorials = 10	Practical =	00							
anatomical and p	hysiological systems of the		rse is to develop the unders			ps withir	and b	etwee	en			
	OMES (CO): course completion, learner	rs will deve	clop following attributes:									
COURSE OUTCOME (CO)			ATTRIBUT	ES								
CO1	Animal Tissue system of	animals, n	nembrane potential									
CO2	Digestive system, muscle	system, r	nervous system									
CO3	Respiratory system, cardiovascular system, excretory and reproductive system											
	Host-parasite relationship, global features of parasites											
	rise detailed content											
Unit-1	Number of lectures = 0		Title of the unit: Animal ti									
Membrane structu	re and function, Equilibri	um potent	Animal Physiology: Membra ials, Resting membrane pot	ential, Ionic ste	ady state.	ort syste	ms in a	anima	ıls,			
Unit-2	Number of lectures = 0		Title of the unit: Digestive				1					
			h muscle, Nervous system: / agation, Synapses, central a				identio	on cha	anne	эıs,		
	Number of lectures = 08		Title of the unit: Respirate									
			transport and chloride shi									
reproductive cycle).	•	tive system: testis, ovary,			onal reg	ulatior	ı of f	ema	ile		
Unit-4	Number of lectures = 0		Title of the unit: Host p		-							
	Number of lectures = 0		zoan parasite, Nematode pa		minthes pa	rasite.						
Unit-5 Beneficial and bai			Title of the unit: Econom aculture, Sericulture, Apicu									
11. CO-PO mappin		11010, 7190										
COs	8	Attri	butes		PO1	PO2 PO	3 PO4	PO5	PO6	PO7		
CO1 Animal Tissue	system of animals, memb	rane poten	tial		3	1				1		
CO2 Digestive syst	em, muscle system, nervous	system			3	1				1		
CO3 respiratory sy	3 1 1											
CO4 host-parasite	relationship, global feature	s of parasi	te		3	1			3	1		
CO5 <i>Economic zo</i> <i>Apiculture.</i>	ology, beneficial and harm	ul organis	ms, Vermiculture, Aquaculture	, Sericulture,	3	1			3	1		
	3: Strong	contributi	on, 2: Average contribution	, 1: Low contrib	ution	1 1		L				
12. Books recomm	ended:		-									
 Moffett D and Scl Seeley R, Stepher Sherwood L – Hu 	 Fox S I – Human Physiology, (McGraw Hill, 1998, ISBN: 0071157069) Moffett D and Schauf C L – Human Physiology: Foundations & Frontiers, (Mosby, 1993, ISBN: 801669030) Seeley R, Stephens T and Tate P – Anatomy & Physiology, (McGraw-Hill, 1999, ISBN: 0071169881) Sherwood L – Human Physiology: From Cells to Systems, (Wadsworth Publishing, 2000, ISBN: 0534568262) Fortora G J Principles of Anatomy & Physiology, (John Wiley & Sons, 1999, ISBN: 0471366927) 											

PO-PSO	01)2	33	04	55	96	70	01	OS2	SO3	PSO4
СО	Ы	PO2	PO3	Ŏ.	PO5	PO6	PO7	PSO	РО	PS	PS
CO1	3	1					1	3			
CO2	3	1					1	3			
CO3	3	1					1	3			
CO4	3	1				3	1	3	2		
CO5	3	1				3	1	3			2
BS111	3	1				2	1	3	1		1

B. Sc. BIOTECHNOLO	GY 1 st year/ 2 nd semester											
1. Name of the Departme	ent: Biosciences											
2. Course Name	FUNDAMENTALS OF BIO	DCHEMISTRY		L		Т			Р			
3. Course Code	BS112			3		1			0			
4. Type of Course (use ti	ck mark)	Core (J)	Foundation	n Course ()	D)epart	ment	al Ele	ctive	e ()		
5. Pre-requisite (if any)	10+2 with Biology	6. Frequency (use tick marks)	Even (\boldsymbol{J})	Odd ()	Eithe	er Sen	n()	Ever	y Se	m ()		
	ures, Tutorials, Practicals											
Lectures = 30		Tutorials = 10	Practical =									
		rse is to develop the understand	ding of basic	cs of biom	olecu	iles in	cludi	ng				
	cid & protein, lipids, Nucleic	Acid and Vitamins.										
9. COURSE OUTCOME After the successful course	25 (CO): completion, learners will deve	lon following attributes:										
COURSE												
OUTCOME (CO)		ATTRIBUTES										
CO1 Unders	stand the basics of carbohydr	rate, its classification										
CO2 Unders	stand the basics of Amino aci	ids & proteins										
CO3 Have k	nowledge of basics of lipids											
CO4 Unders	stand the basics of Nucleic A	cids										
CO5 Unders	tand the basics of Vitamins											
10. Unit wise detailed												
Unit-1 Num	per of lectures = 08	Title of the unit: - Introduction	on to Biom	olecules								
	s, Lipids and Nucleic acids.											
	per of lectures = 08	Title of the unit: - Carbohydra										
Structure, classification a cellulose).	and properties of Monosacch	narides, Disaccharides, and Poly	saccharide	s (starch,	glycc	ogen,	pepti	dogly	can,	,		
	er of lectures = 08	Title of the unit: Amino acide										
		s, Structures and functions of pr	oteins (Hb a	and Myogl	obin)).						
	per of lectures = 08	Title of the unit: Lipids										
	and properties of Fatty acids,	, Glycerolipid, Cholesterol, Sphir	ngolipid, ph	ospholipid	s, lip	oprote	eins,					
glycoproteins, isoprene	per of lectures = 08	Title of the unit: - Nucleic ac	ids									
		olynucleotides, DNA, types and		NA types a	and f	unctic	ons. F	orces	3			
stabilizing nucleic acid s			,,				,.		-			
11. CO-PO mapping												
COs	Attri	butes		PO1	PO2	PO3	PO4	PO5 <mark>P</mark>	O6]	PO7		
CO1 Understand the basic	es of carbohydrate, its classifica	ition		3	1					1		
CO2 Understand the basic	Understand the basics of Amino acids & proteins311											
CO3 Have knowledge of b	asics of lipids			3	1					1		
CO4 Understand the basic	s of Nucleic Acids			3	1					1		
CO5 Understand the bas	ics of Vitamins			3	1					1		
	3: Strong contribution	on, 2: Average contribution , 1: L	low contribu	ution								
13. Books recommended												
1	ry- AlbertL. Lehninger CBS Pul											
9 Diochomistry Lubort st	chemistry – Lubert stryer Freeman International Edition.											
	try – Keshav Trehan Wiley Eastern Publications tals of Biochemistry-J.L. Jain, S.Chand and Company											

PO-PSO	1	02	33	74	5	90	70	6	S2	03	04
СО	P01	P02	PO3	P04	PO5	PO6	P07	PS01	POS2	PSO3	PSO4
CO1	3	1					1	3	2	1	
CO2	3	1					1	3	2	1	
CO3	3	1					1	3	2	1	
CO4	3	1					1	3	2	1	
CO5	3	1					1	3	2	1	
BS112	3	1					1	3	2	1	

B. Sc. BIOTECH	NOLO	GY 1 st year/ 2 nd semester									
1. Name of the D											
2. Course Name		FUNDAMENTALS OF MI	CROBIOLOGY		L	,	Т		Р		
3. Course Code		BS113			3		1		0		
4. Type of Cours	e (use ti	ck mark)	Core (J)	Foundation C	ourse	0	Departm	ental	Electi	ve ()	
5. Pre-requisite (10+2 with Biology	6. Frequency (use tick marks)		Odd	Ē	Lither Sem		ery Se		
7. Total Number	of Lect	ures, Tutorials, Practicals					()				
Lectures = 30			Tutorials = 10	Practical = 0	0						
	l of mic	roorganisms, microbes in e	urse is to develop the underst xtreme environments and micr								
		completion, learners will dev	elop following attributes:								
COURSE OUTCOME (CO)		•	ATTRIBUTES								
CO1	Know t	he basics of microbiology									
CO2	Have k	nowledge of the general cla	assification of microbes								
CO3		tand basics of Control of Mi									
CO4	study b	acteriophages and microbe	es in extreme environments an	d microbial in	teract	ions					
	know the basics of recombination in Prokaryotes										
10. Unit wise deta											
Unit-1		per of lectures = 08	Title of the unit:History	and classific	ation	of m	icrobiolo	gy			
microorganisms; Unit-2 Physical agents (Nature Numt Autocla	of the microbial cell surface per of lectures = 08 ave, Hot air oven, Laminar a	hisms (bacteria, fungi, viruses, e, gram positive and gram neg Title of the unit: - Control o irflow and membrane filter.), c Pathogenesis of microorganisi	ative bacteria of Microorgar hemical agent	i; Gróv <mark>nisms</mark> ts (Alc	wth c	urve. , Halogen	s and	Gase	eous	
Bacterial (tubercu	ulosis, g	gall), viral (SARS, TMV), fur	ngal (red rot of sugar cane, de Title of the unit: Microbes i interactions:	rmatitis) and p	orotoz	oan (malaria).		-		
The thermophiles	s alkalo		biosis and antibiosis among n	nicrobial popu	lation	, N2	fixing mic	robes	; in		
agriculture and fo											
Unit-4		per of lectures = 08	Title of the unit: Recombi	ination in Pro	okaryo	otes					
		ation and Transduction.	Title of the unit. Destariou			_					
Unit-5 Lytic and lysoger and Differential s 11. CO-PO mappi	nic cycle tains.	per of lectures = 08 e. Stains and staining techn	Title of the unit: - Bacterio iques: Principles of staining, T				stains, str	uctur	al stai	ins	
COs	Attributes PO1 PO2 PO3 PO4 PO5 PO6 PO7										
CO1 Know the bas	sics of m				3	1			2	2	
	Ŷ	e general classification of	microbes		3	1			2	2	
	0 0	Control of Microorganisms			3	1			2	2	
			vironment and microbial interact	ions	3	1			3	1	
Ť		ecombination in Prokaryotes		= = = = =	3	1			1	1	
12. Books recom	•	3: Strong contributio	on, 2: Average contribution , 1:	Low contribu	tion		1 1	I		I	
12. DUUKS TECOIII	menueu	•									

1. Introduction to Microbiology, Ingraham, 2ed.

- 2. Brock Biology of Microorganisms, Madigan et al, 9th ed.
- 3. General Microbiology, R.Y. Stanier, J.L. Ingraham, M.L. Wheelis and P.R. Painter, Macmillian
- 4. Microbiology VI Edition, M.J. Pelczar, E.C.S. Chan and N.R. Kreig, Tata McGraw Hill
- 5. Principles of Microbiology, R.M. Atlas, Wm C. Brown Publisher.
- 6. The Microbial World, Roger Y. Stanier, Prentice Hall
- 7. Howe.C. (1995) Gene Cloning and manipulation, Cambridge University Press, USA
- 8. Lewin, B., Gene VI New York, Oxford University Press.
- 9. Sambrooket al (2000) Molecular cloning Volumes I, II, & III Cold spring Harbor Laboratory Press, New York, USA

10. Walker J.M. and Gingold, E.B. (1983) Molecular Biology & Biotechnology (Indian Edition) Royal Society of Chemistry U.K

Course Articulation Matrix: (Mapping of COs with POs and PSOs)

PO-PSO	0	02	PO3	94)5	PO6	70	01	S2	03	PSO4
СО	Ъ Д	PO2	д	P04	PO5	Ы	PO7	PS	РО	PS	PS
CO1	3	1				2	2	3	2		
CO2	3	1				2	2	3	1		
CO3	3	1				2	2	3	2	1	1
CO4	3	1				3	1	3	2	1	1
CO5	3	1				1	1	3	2		
BS113	3	1				2	2	3	2	1	1

B. Sc. BIOTECHNOL	OGY 1 st year/ 2 nd seme	ester										
l.Name of the Departr	nent: Biosciences											
2.Course Name	ANIMAL SCIEN	CES LAB		L		Т		Р				
3.Course Code	BS114			0		0		6				
4.Type of Course (use	tick mark)	Core(J)	Founda	tion Course ()	Depar	tmental	Elective()				
5.Pre-requisite (if any)	10+2 with Biology	6.Frequency(use tick marks)	Even (J)	Odd ()	Eit	her Sem	() Eve	rySem()				
7.TotalNumberofLect	ures,Tutorials,Practica	ls										
Lectu	res=00	Tutorials=00			-	Practica	l=10					
8. COURSE OBJEC	CTIVES: Develop the up	nderstanding of basics of biomo	lecules, c	ell structure, a	ssay of	f enzyme	s, transpo	ortation and				
Osmosis												
COURSE OUTCOM												
		s will develop following attribut	es:									
COURSE OUTCOME		A	TRIBU	TES								
(CO)	Porform accay of hi	omolecules as carbohydrate,			n and	choleste	arol					
CO1	-	-		-	n anu	CHOIESIE						
CO2	-	ture of prokaryotes and perfo	rm isolat	ion of nuclei								
CO3	Can do Cell harvest											
CO4	Perform assay enzymes as Salivary amylase											
CO5	Understand basics	of cell Transportation and Os	nosis									
10.Syllabus												
Exp-01	Spot test for carbohy	/drates										
Exp-02	Estimation of reduci	ng sugars by Benedict's Meth	od									
Exp-03	Spot tests for Amino	Acids										
Exp-04	Protein estimation											
Exp-05	Estimation of Chole	esterol										
Exp-06		aryotes and eukaryotes										
Exp-07	Isolation of nuclei f											
Exp-08	Cell harvesting-met											
Exp-09	Cell lysis-method											
Exp-10	Cell viability by Try											
Exp-11	Salivary amylase a											
Exp-12		alts and sugars by dialysis m	embrane	•								
Exp-13	Osmosis by potato	osmometer										
I. CO-PO mapping												
COs	Attribu	ites	PO1	PO2 P	03	PO4 PC	D5 PO	6 PO7				
protein and c	cholesterol	rbohydrate, amino acids,	3	3	1			3				
CO2 Study the Cel nuclei	ll structure of prokaryot	es and perform isolation of	3	3	1			3				
	harvesting and Cell lysis	5	3	3	1			3				
	es Salivary amylase		3	3	1			3				
	basics of cell Transporta	tion and Osmosis	3		1		1	3				
	v 1	ntribution, 2: Average contrib			ation	1		I				

PO-PSO	0)2)3	D4)5	96	70	PS01	S2	03	PSO4
СО	Ы	PO2	PO3	P04	PO5	PO6	P07	PS	PO	PS	PS
CO1	3	3	1				3	3	1	2	
CO2	3	3	1				3	3	1	2	
CO3	3	3	1				3	3	1	2	
CO4	3	3	1				3	3	1	2	
CO5	3	3	1			1	3	3	1	2	
BS114	3	3	1			1	3	3	1	2	

		B. Sc. BIO	TECHNOLOGY 2 nd year/ 3	^{3rd} semester							
1. Name of the De	epartme	nt: Biosciencess									
2. Course Name		METABOLISM			L		Т			Р	
3. Course Code		BS201			3		1			0	
4. Type of Course	e (use tic	k mark)	Core (J)	Foundation	Course ()	Ι	Depart	ment	al El	ectiv	e ()
5. Pre-requisite (i	f any)	10+2 with Biology	6. Frequency (use tick marks)	Even ()	Odd (1)	Eithe	er Sen	n()	Eve	ry Se	m ()
-		res, Tutorials, Practicals									
Lectures = 30			Tutorials = 10	Practical = 0)						
			course is to develop the unde								
			significance of glycolysis and								
		dies, protein metabolism, ro	ble of urea cycle and errors of pr	otein metaboli	sm, bios	ynth	esis a	nd de	egrad	lation	n of
purine and pyrim 9. COURSE OUTO		(CO).									
		completion, learners will dev	elop following attributes:								
COURSE		1									
OUTCOME (CO)			ATTRIBUTES								
CO1	Underst	tand the characteristic of E	nzymes, enzyme inhibition and	kinetics							
CO2	Know th	ne basics of carbohydrate r	netabolism, significance of glyco	olysis and ETC	C, untreat	ed d	iabete	es			
CO3	Know th	ne basics of Lipid metabolis	sm and production of ketone boo	dies							
			olism, role of urea cycle and erro	ors of protein r	netabolis	m					
CO5	Know th	ne biosynthesis and degrac	lation of purine and pyrimidine								
10. Unit wise deta	nit wise detailed content										
Unit-1											
			zyme activity, coenzymes, prost								sis,
			Menten equation, Lineweaver-Bu			ion,	Allost	eric e	enzyr	nes.	
Unit-2		er of lectures = 08	Title of the unit: Carbohydr					tab a			
		•	d Oxidative phosphorylation, Glu	-	s and Gly	cog	en me	etabo	lism.		
		er of lectures = 08	Title of the unit: lipid metal								
			es, acidosis, ketosis, cholestero								
Unit-4		er of lectures = 08	Title of the unit: protein n I transamination reactions. Inbo		toin mot	ahali	om				
Unit-5		er of lectures = 08	Title of the unit: Nucleic ac			aboli	5111.				
		osynthesis and degradation									
11. CO-PO mappir											
COs	-8	Δ ft	ributes		PO1	PO2	PO3	PO4	PO5	206	PO7
	ho ohana				3	1	105	104			2
		acteristic of Enzymes, enzyme									
	v		ficance of glycolysis and ETC, untr	reated diabetes	3	1					2
	· ·	pid metabolism and production	•		3	1					2
	*		a cycle and errors of protein metab	polism	3	1					2
CO5 Know the bio	synthesis	s and degradation of purine a			3	1					1
	3: Strong contribution, 2: Average contribution , 1: Low contribution										
13. Books recomm											
		ry- AlbertL. Lehninger CBS I									
•		yer Freeman International Ed									
		rehan Wiley Eastern Publicat									
		nistry-J.L.Jain S.Chand and C a, Bangalore University	ompany								
6. Fundamental of E											
		mistry (A Modern Approach)								
			er L.P.Adams, John T. Knowler an	d David P.Lead	er, Chapn	nan a	nd Ha	<u>11 Pu</u> t	licati	ons	

PO-PSO											
	5	PO2	PO3	P04	05	PO6	P07	0	POS2	03	PSO4
СО	ЪЧ	ЪЧ	Ъ	Ъ	ЪЧ	Ъ	Ъ	DSO	ЪС	PSO	ЪО
CO1	3	1					2	3	2	1	
CO2	3	1					2	3	2	1	
CO3	3	1					2	3	2	1	
CO4	3	1					2	3	2	1	
CO5	3	1					1	3	2		
BS201	3	1					2	3	2	1	

		B. Sc. BIC	DTECHNOLOGY 2nd year/ 3	3 rd semester								
1. Name of the Dep	partmei	nt: Biosciencess										
2. Course Name	-	BIOPHYSICAL CHEMI	ISTRY		L		Т	J	2			
3. Course Code		BS202			3		1	()			
4. Type of Course	(use tic	k mark)	Core (1)	Foundation	Course ()	Ι	Departmen	tal Electi	ve ()			
5. Pre-requisite (if	any)	10+2 with Biology	6. Frequency (use tick marks)	Even ()	Odd (1)	Eith	ner Sem ()	Every S	lem ()			
7. Total Number o	of Lectu	res, Tutorials, Practicals										
Lectures = 30			Tutorials = 10	Practical = 0)							
spectrum, Beer's concept of partitio	law and on coeff Importa	d Lambert's law, principle icient and application of v ance of radioactivity in bio	s course is to develop the unde e, working and applications of spo various chromatographic techniqu plogical studies, GM counters and	ectrophotomet ues, Centrifuga	ter, conce ation and	epts	of chroma	tography	, and			
			levelop following attributes:									
COURSE OUTCOME (CO)			ATTRIBUTES	;								
	Jnderst	and the basics of biophys	sics, chemical bonds and concept	t of thermodyn	amics.							
		and the basics and types		-								
CO3 k	know ba	asic principle, methodolog	y and application of various chro	matographic to	echnique	s						
		-	horesis - principles and application									
CO5 L	Jnderst	and the importance of rac	dioactivity in biological studies, G	M counters an	d Scintill	atior	counting.					
10. Unit wise detai	iled con											
		er of lectures = 08	Title of the unit: Basics of I									
	– Ionic	bond, covalent bond, hy	drogen bond and peptide bond, $ar{v}$	/an Der-Waals	s forces, l	Princ	ciples of					
thermodynamics.	Numb	er of lectures = 08	Title of the unit: Analytical	techniques								
			techniques: UV-visible spectros		R. Fluores	scen	ce and atc	mic				
		X-ray crystallography.		· · · · · · · · · · · · · · · · · · ·	,			-				
		r of lectures = 08	Title of the unit: Chromatog	graphy								
		, HPLC, GLC and molecu		_								
		er of lectures = 08	Title of the unit: Centrifug									
	nstrum	entation and applications	. Electrophoresis: Principles and	applications (F	PAGE an	d Ag	arose gel					
electrophoresis).	Numb	er of lectures = 08	Title of the unit: Radioactiv	/itv								
			sure of radioactivity, GM counters		ion count	ing.						
11. CO-PO mapping												
COs		At	tributes		PO1	PO2	PO3 PO4	PO5 <mark>PO6</mark>	6 PO7			
CO1 understand th	nd the basics of biophysics, chemical bonds and concept of thermodynamics 3 1 2											
CO2 understand the	e basics	and types of spectroscopy			3	1			2			
CO3 know basic p	rinciple,	, methodology and applicate	ion of various chromatographic tech	niques	3	1			2			
CO4 study Centrif	ugation	and Electrophoresis-Princi	ples and applications		3	1			2			
CO5 Understand I	Importar	nce of radioactivity in biolo	gical studies, GM counters and Scint	tillation countin	<i>ag</i> 3	1			2			
		3: Strong contribution	ution, 2: Average contribution , 1:	Low contribut	tion							
13. Books recomm												
		ntials of Biophysics, New A										
	J.K (1967) Statistics in Biology, Vol. I c Graw Hill, New York. I R.C (1974) Statistics for Biologists, Cambridge Univ. Press, Cambridge.											
	mpbell R.C (1974) Statistics for Biologists, Cambridge Univ. Press, Cambridge. niel (1999) Biostatistics (3rd Edition) Panima Publishing Corporation.											

Swardlaw, A.C (1985) Practical Statistics for Experimental Biologists, John Wiley and Sons, Inc. NY
 Khan (1999) Fundamentals of Biostatistics Publishing Corporation

PO-PSO	0	02	33	04)5	96	70	PS01	POS2	03	PSO4
СО	Ъ Ч	PO2	PO3	P04	PO5	PO6	P07	PS	РО	PS	PS
CO1	3	1					2	3	2	3	
CO2	3	1					2	3	2	3	
CO3	3	1					2	3	2	3	
CO4	3	1					2	3	2	3	
CO5	3	1					2	3	2	3	
BS202	3	1					2	3	2	3	

B. S	c. BIOTECHI	NOLO	GY 2 nd year/ 3 rd semester									
1. N	ame of the De	partm	ent: Biosciences									
2. C	ourse Name		CELL BIOLOGY AND G	EN	ETICS		L		Т		Р	,
3. C	ourse Code		BS203				3		1		0	
4. T	ype of Course	(use t	ick mark)		Core (<i>I</i>)	Foundation (Course ()	D	epartme	ntal E	lectiv	ve ()
5. Pi any)	re-requisite (i)	f	10+2 with Biology		6. Frequency (use tick marks)	Even()	Odd (1)	Either	r Sem ()	Ev	ery Se	em ()
7. Te	otal Number (of Lect	ures, Tutorials, Practicals									
Lect	tures = 30				Tutorials = 10	Practical =	00					
	OURSE OBJI sduction and			ed ⁻	to enable the students to unders	tand the cell	structur	e and	its func	tions,	signa	al
	OURSE OUT r the successfu		ES (CO): se completion, learners will	dev	elop following attributes:							
	COURSE COME (CO)				ATTRIBUTES							
	CO1 [Develo	p an understanding of the	e ce	Il structure and their functions, c	ytoskeleton a	and prok	aryoti	c and e	ukary	otic c	ells
	CO2	earn	about Cell Division, Memb	oran	e transport, transduction, cell se	nescence ar	nd Progra	amme	ed Cell [Death		
	CO3				osomal Variations, Chromosome						rratio	ons
	CO4	earn	about basic genetics, epis	tasi	s, Concepts of allosomes and a	utosomes, Li	inkage a	nd Cr	ossing (Over.		
	CO5 L	earn	about mutations, human G	Sen	etics, DNA damage and repair.							
10. U	Unit wise deta	iled co	ntent									
Unit	t-1	Num	per of lectures = 08		Title of the unit: Cell as a Bas	sic unit of Li	iving Sy	stem	S			
					n eukaryotic cell – (both plant an crofilaments); cell motility.	d animal cell	I). Struct	ure ar	nd funct	ions c	f cell	
Unit			per of lectures = 08		Title of the unit: Cell Division							
			meiosis, Membrane trans cell senescence, Program		: active and passive transport, ir d Cell Death.	ntroduction to	o signal t	ransd	luction a	and its		
Unit	t-3 I	Numb	er of lectures = 08		Title of the unit: Chromosom	es: Structu	ral Orga	nizati	ion			
mod	lel, Special ty	pes of			nd heterochromatin, chemical co d and Lampbrush chromosomes						ne	
Unit			per of lectures = 08		Title of the unit: Mendelism							
facto Epis	ors, Comb pa stasis: Pluma	ttern i ge col	n fowls, Complementary g our in poultry, Multiple alle	jene elisn	dominance and simple proble es: Flower color in sweet peas, M n: Blood groups in human beings rossing Over, Mechanism and in	Multiple facto s, Concepts o	rs: Skin	color	in huma	an bei	ngs,	
Unit			per of lectures = 08		Title of the unit: Mutations	•						
and i and of DN repa	microbes for Turner's sync NA damage, N ir.	econo drome Major r	mic benefit of man. Huma), Autosomal (Down syndi	in G rom	hemical mutagens, Mutation at t enetics: Karyotype in man, inhe e and Cri-Du- Chat syndrome) notoreactivation, nucleotide and b	rited disorde). DNA Dama	ers: Allos age and	somal Repa	(Klinefe ir: Caus	elter s ses ar	yndro d Tyj	ome pes
	O-PO mappin	ıg										
COs		,			outes				PO3 PO	4 PO5	PO6	
COL	eukaryotic cel	ls			heir functions, cytoskeleton and pro	·	3	1				2
CO2	Death.		-		nsduction, cell senescence and Prog			1				2
CO3	Learn about C aberrations	Chrome	osomes, Chromosomal Varia	tion	s, Chromosome mapping, structura	l and numeric	cal 3	1				2

CO4	Learn about basic genetics, epistasis, Concepts of allosomes and autosomes, Linkage and Crossing Over.	3	1		2
CO5	Learn about mutations, human Genetics, DNA damage and repair.	3	1		2
	3: Strong contribution, 2: Average contribution, 1: Low contribution				
12. B	ooks recommended:				
1	. Molecular Biology of cell – Bruce Alberts et al, Garland publications				
2	2. Animal Cytology & Evolution – MJD, White Cambridge University Publications				
3	. Molecular Cell Biology – Daniel, Scientific American Books.				
2	Cell Biology – Jack D.Burke, The William Twilkins Company.				
4	5. Principles of Gene Manipulations – Old & Primrose, Black Well Scientific Publications.				
6	5. Cell Biology & Molecular Biology – EDP Roberties & EMF Roberties, Sauder College.				
7	. Principles of Genetics - E.J.Gardener, M.J.Simmons and D.P.Snustad, John Wiley & Sons Publication	ns			

PO-PSO	5	02	03	04	05	90	70	6	S2	03	PSO4
СО	Ы	PO2	Ъ	РО	РО	PO6	PO7	PS	PO	PS	PS
CO1	3	1					2	3	2		
CO2	3	1					2	3	2		
CO3	3	1					2	3	2		
CO4	3	1					2	3	2		
CO5	3	1					2	3	2		
BS203	3	1					2	3	2		

B. Sc. BIOTECH	NOLO	GY 2 nd year/ 3 rd semester									
1. Name of the D	epartm					•					
2. Course Name		IPR AND BIOSAFETY			L		Т			Р	
3. Course Code		BS204			3		1			0	
4. Type of Cours	e (use t	ick mark)	Core (<i>J</i>)	Foundation	Course ()	Ι	Depart	ment	al Eleo	ctiv	e ()
5. Pre-requisite (if any)	10+2 with Biology	6. Frequency (use tick marks)	Even()	Odd (/)	Eith	er Sen	n()	Every	y Se	m ()
	of Lec	tures, Tutorials, Practicals									
Lectures = 30			Tutorials = 10	Practical =							
and bioethics.		•	rse is to develop the understand	ing of Intelle	ctual pro	perty	y, IPR	, Bios	safety,	, GI	ΛO
· ·		ES (CO): se completion, learners will dev	elop following attributes:								
COURSE OUTCOME (CO)			ATTRIBUTES								
CO1		pasic concept of Intellectual P									
CO2			s types of IPRs, its protection and	d infringeme	nt						
CO3		knowledge of International tre									
CO4			GMOs and various Institutional	committees							
CO5		knowledge of Bioethics and its	s legal implications								
10. Unit wise deta								_			
Unit-1	Num	ber of lectures = 08	Title of the unit: Concept of I Property	ntellectual	Property	. Kir	nds of	Int	ellect	tual	
Patents, Copyrig and its types.	ghts, D	esigns, Trademarks, Geograp	bhical Indication. Infringement of	IPR, Its prot	ection ar	nd Ro	emedi	es Li	censir	ng	
Unit-2		ber of lectures = 08	Title of the unit: Requirement	-							
	lication	; Distinction among various for	d database; IPR protection of l prms of IPR; Rights / protection,								
		er of lectures = 08	Title of the unit: Obtaining pa	atent							
Invention step a	nd prio e studi	r art and state of art procedur es; Indian Patent Act 1970 (a	e; Detailed information on paten mendment 2000); Major changes	ting biologic							
Unit-4		ber of lectures = 08	Title of the unit: Biosafety								
Institutional Bios	afety (els; Biosafety guidelines - Goverr 2. for GMO applications in food a gement and communication							of	
Unit-5		ber of lectures = 08	Title of the unit: Bioethics								
International; Bio bioethics.	ethics	and limitation; Ethical co of genes; Bioethics in health o	nflicts in Biotechnology; D care: Bioethical dilemmas in med	ifferent para ical and surg	•						in
11. CO-PO mapp	oing										
COs		Attri					PO3		PO5 PO	<mark>06</mark>]	
	· ·	t of Intellectual Property and its			3	1		3	3		3
		cription of various types of IPRs,			3	1		3	3		3
		International treaties and case			3	1		3	2	-	3
· ·		ling of Biosafety, GMOs and var			3	1		3		3	3
CO5 Have knowl	edge of	Bioethics and its legal implicati			3	1	2	3	3 3	3	3
		3: Strong contributi	on, 2: Average contribution , 1: L	ow contribut	10 n						

12. Books recommended:

- 1. Genome, T.A. Brown, John Willey & Sons Inc.
- 2. Molecular Biology of the Cell, B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J.D. Watson, Garland Publishing
- 3. Molecular Cell Biology, H. Lodish, A.Berk, S. Zipursky, P Matsundaira, D. Baltimore and J.E. Barnell, W.H. Freeman and Company.
- 4. Molecular Biology of the Gene, J.D. Watson, A.M. Weiner and N.H. Hopkins, Addison- Wesley Publishing.
- 5. Introduction to Practical Molecular Biology, P.D. Dabre, John Wiley and Sons Inc.
- 6. Biotechnology- B.D. Singh.

Course Articulation Matrix: (Mapping of COs with POs and PSOs)

PO-PSO	5	02)3	04	05	PO6	70	6	S2	03	PSO4
СО	Ъ Ч	Ы	PO3	P04	Ы	Ы	PO	PS	РО	PS	PS
CO1	3	1		3	3		3	3	1	1	3
CO2	3	1		3	3		3	3	1	1	3
CO3	3	1		3	2		3	3	1	1	3
CO4	3	1		3	3	3	3	3	1	1	3
CO5	3	1	2	3	3	3	3	3	1	1	3
BS204	3	1	1	3	3	2	3	3	1	1	3

B. Sc. BI	OTECHNOLO	OGY 2 nd year/ 3 rd sen	nester								
1.Name o	of the Departm	ent: Biosciences									
2.Course	Name	MICROBIOLOGY	(LAB		L			Т]	Р	
3.Course	Code	BS205			0			0		6	
4.Type of	f Course (use ti	ick mark)	Core(J)	Foundati	ion Cours	e ()		Depar	tmental	Electiv	re()
5.Pre-req	luisite (if any)	10+2 with Biology	6.Frequency(use tick marks)	Even()	Odd (/)		Either S	em ()	EveryS	em()	
7.TotalN	umberofLectu	res,Tutorials,Practic	als								
	Lecture	s=00	Tutorials=00				Pra	ctical=	-10		
			pletion of the course, a s							-	
	•••		and work on microbes, Stai	-	•	•					
	-		and sterilization of glasswar	•	•			n of ba	acteria a	nd fun	gi from
			ia, Isolation and purification a	and estimation	on of DN	A and	d RNA				
	E OUTCOME										
*	*	e completion, learnei	rs will develop following attribu	tes:							
	E OUTCOME (CO)			ATTRIBUT	TES						
		Develop an unders	tanding of Instruments: Comp	ound micro	scope A	utock	ave Ho	t air o	ven pH	meter	Laminar
			and Staining Techniques as S								
		fungal staining.							<u>,</u>		
	CO2	Have knowledge of	enzyme assay and Biochem	ical tests-st	tarch hyd	rolysi	is, gelat	tin liqu	efaction	. the c	ellular
	02		caryotic and eukaryotic cells		-						
	CO3		ses involved in culturing of m					tion of	glasswa	are, me	edia
	005	preparation, isolation	on of bacteria and fungi from	soil/ air/wate	er/ other s	sourc	es				
	CO4		wth pattern of bacteria								
	CO5	Have clear underst	anding of processes involved	in Isolation	and puri	ficatio	on and e	estima	tion of D	NA an	nd RNA
10.Syllab	ous										
F	Exp-01	Isolation and purific	ation of genomic DNA. Estim	ation of DN/	A and RN	IA					
F	Exp-02	Enzyme assay (one	example)								
ŀ	Exp-03	Biochemical tests-s	starch hydrolysis, gelatin lique	efaction.							
F	2AP-04		zation of glassware.								
F		Study of instrument centrifuge	s: Compound microscope, A	utoclave, Ho	ot air over	n, pH	meter,	Lamin	ar airflo	w and	
F		0	Nutrients agar, Nutrient broth	and LB.							
F	Exp-07	Staining Technique	s: Simple, Negative staining,	Gram staini	ing, Endo	spore	e stainir	ng, fun	igal stair	ning.	
	Exp-08	Isolation of bacteria	and fungi from soil/ air/water	- dilution a	and pour p	olate	method	ls			
F	Exp-09	Study of <i>Rhizobium</i>	from root nodules of legume	S							
ŀ	Exp-10	Growth curve of bac	cteria								
11. СО-РС	-										
COs			Attributes		PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	air oven, pH n	ieter, Laminar airflow	nents: Compound microscope, A v, centrifuge and Staining Tech ndospore staining, fungal staini	niques as Sin		3	1			3	3
000	-		d Biochemical tests–starch hyd	-	in 3	3	1				3
CO2			on of prokaryotic and eukaryotic								

CO3	Understand processes involved in culturing of microbes as Cleaning and sterilization of glassware, media preparation, isolation of bacteria and fungi from soil/air/water/ other sources	3	3	1		2	3
CO4	Understand the growth pattern of bacteria	3	3	1		2	3
CO5	Have clear understanding of processes involved in Isolation and purification and estimation of DNA and RNA	3	3	1		1	3
	3: Strong contribution, 2: Average contribution, 1: Low	v cont	ribut	ion			

PO-PSO	0	02)3	04)5	06	70	S01	OS2	03	PSO4
СО	PO	P02	PO3	P04	PO5	РО	P07	PS	РО	PS	PS
CO1	3	3	1			3	3	3	2	2	3
CO2	3	3	1				3	3	2	2	3
CO3	3	3	1			2	3	3	2	2	3
CO4	3	3	1			2	3	3	2	2	3
CO5	3	3	1			1	3	3	2	2	3
BS205	3	3	1			2	3	3	2	2	3

B. Sc. BIOTECHNOLO	GY 2 nd year/ 3 rd seme	ester							
1.Name of the Departme	ent: Biosciences								
2. Course Name	CELL BIOLOGY	& GENETICS LAB		L			Т		Р
3. Course Code	BS206			0			0		6
4. Type of Course (use tie	ck mark)	Core(J)	Foundat	tion Co	urse () Depa	rtment	al Elec	tive()
5.Pre-requisite (if any)	10+2 with Biology	6.Frequency(use tick mark	s) Even () Odd	(J) E	ither S	em ()	Every	Sem()
7.TotalNumberofLectur									
		Tutorials=00				Practica			
		f this course is to develop the							
		nd yeast, Cell division proce s – with the help of slides and							
Buccal smear – Barr bo						a u		a stain	ng and
9. COURSE OUTCOM									
	se completion, learner	rs will develop following attribu	tes:						
COURSE OUTCOME (CO)		ATT	RIBUTES						
201		e of Micromotor and calibrativ							
		e of Micrometer and calibration	,						
		d can evaluate Cell division: I	villosis and	a meiosi	5				
	Analyze Chromoson								
	v	types of chromosomes as po							
	Make and analyze E	Blood smear – differential stai	ning, Bucc	al smea	ar – Bar	r bodie	S		
10. Syllabus									
		nd calibration, measurement							
-		and meiotic studies in grassh		es, onio	on root t	ips and	tiower	bud	
-		nting of polytene chromosom	es						
L ·	Buccal smear – Barr								
		- with the help of slides romosomes by slides							
	Blood smear – differ								
11. CO-PO mapping									
COs	Attribu	ıtes	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1 Comprehend th	ne use of Micrometer a	and calibration, measurement of	3	3	1				3
cells.	v								
CO2 Have knowledg	ge and can evaluate Ce	ell division: Mitosis and meiosis	3	3	1	1			3
CO3 Analyze Chrom	nosomes.		3	3	1				3
CO4 Have knowledg	ge of types of chromoso	omes as polytene chromosomes	3	3	1				3
	yze Blood smear – difj	ferential staining, Buccal smear	3	3	1				3
– Barr bodies									
	3: Strong contr	ibution, 2: Average contributi	on , 1: Low	^r contrib	oution				

PO-PSO	чO	ЧО	ЧО	Ч О	ЧО	ЧO	ЧО	<u>ი</u> ა	чO	Ч S	<u>ი</u> ა
--------	----	----	----	--------	----	----	----	------------	----	-----	------------

СО										
CO1	3	3	1			3	3	3	3	3
CO2	3	3	1			3	3	1	2	1
CO3	3	3	1			3	3	1	2	1
CO4	3	3	1			3	3	1	2	1
CO5	3	3	1			3	3	2	3	3
BS206	3	3	1		1	3	3	2	2	2

					B. Sc.	BIO	TEC	HNOLOGY 2 nd ye	ar/ 4	4 th semester							
1. Na :	me of the De	partme	ent:	Bioscie	ences												
2. Co	Course Name IMMUNOLOGY						L		Т			Р					
3. Co	urse Code		B	S211			-					3		1			0
4. Ty]	pe of Course	(use tic	ck I	mark)			Co	re (1)		Foundation	Cou	rse ()		rtmenta			
	e-requisite (i	•			h Biology		6. F	requency (use tick ma	rks)	Even (/)	0	dd ()	Eithe	er Sem ()	Ev	ery S	Sem (
	tal Number	of Lectu	ires	s, Tutor	ials, Pract	ticals											
	res = 30							torials = 10		Practical = 0							
								e is to develop the un			sics o	f Imm	unolo	gy, type	S 0	f	
	URSE OUT				antibodie	es, nis	stocor	mpatibility, vaccines a	na in	nmunization							
					on, learner	s will d	develo	op following attributes:									
	OURSE COME (CO)							ATTRIBU	JTES	;							
	CO1	Know tł	the	history	and scop	e of In	mmur	nology.									
	CO2							assive, Active, Innate mmune responses ar						and Cell	Me	diat	ed
	CO3	Have basic knowledge of Antigens as haptens, epitopes and Factors influencing immunogenicity, and Antibodies structure, types, production and functions of immunoglobulins, Clonal selection theory and Antigen Antibody reactions as Precipitation, Immunoelectrophoresis, Haem-agglutination, RIA and ELISA.															
	CO4	Comprehend Histocompatibility, structure of MHC class I, II & III antigens and their mode of antigen presentation, MHC restriction Complement system: Components, Classical and alternate pathways of complement activation, Hypersensitivity, Autoimmunity															
	CO5				sive and A s, Peptide			unization, Types of Va Vaccines.	ccine	es: Inactivated	d, Att	enuat	ed, Re	ecombin	ant	anc	ł
10. U	nit wise deta																
Unit-1					ures = 08			e of the unit: Basics									
Media	ated Immun	ity.		•••			-	Passive, Active, Inna		•	nmun	ity, Hu	umora	l and Ce	ell		
Unit-					tures = 08			l <mark>e of the unit: Immun</mark> ns, B & T cells	e Ke	sponses							
Unit-	_				ires = 08			e of the unit: Antiger	ne an	d Antibodies							
Antig immu agglu	ens: hapten inoglobulins itination, RI/	s, epitor Clona A and E	pes al ELIS	s and F selectic SA.	actors infl on theory	. Ant	ng im tigen	munogenicity, Antiboo Antibody reaction:	dies: Preo	Structure, typ cipitation, Im	es, p muno	roduc pelect	tion ar ropho	nd functi resis, H	ons Iae	s of m-	
Unit-					ures = 08					patibility							
structure of MHC class I, II & III antigens and their mode of antiger Components, Classical and alternate pathways of complement act Unit-5 Number of lectures = 08 Title of the unit							plement activation, H	ypers	sensitivity, Au	toimr			t system	ו:			
Unit-								e of the unit: Vaccin									
Pepti	de and DNA	Vaccir			Types of	Vaccir	nes:	Inactivated, Attenuate	d, Re	ecombinant a	nd Si	ubUni	t Vaco	cines,			
11.00	-PO mappin	ug													р		
Cos		Attributes							PO1	PO2	PO3	PO4	P 0] 5	PO6	PO7		
CO1	Know the his	history and scope of Immunology.									3	1					3
CO2	O2 Understand the types of Immunity: Passive, Active, Innate and Acquired immunity, Humoral and Cell Mediated Immunity and the cell and organs of immune responses and their functions,31											3					

	B & T cells.										
CO3	Have basic knowledge of Antigens as haptens, epitopes and Factors influencing immunogenicity, and Antibodies structure, types, production and functions of immunoglobulins, Clonal selection theory and Antigen Antibody reactions as Precipitation, Immunoelectrophoresis, Haem-agglutination, RIA and ELISA.	3	1			2	3				
CO4	Comprehend Histocompatibility, structure of MHC class I, II & III antigens and their mode of antigen presentation, MHC restriction Complement system: Components, Classical and alternate pathways of complement activation, Hypersensitivity, Autoimmunity	3	1			2	3				
CO5	Understand Passive and Active immunization, Types of Vaccines: Inactivated, Attenuated, combinant and SubUnit Vaccines, Peptide and DNA Vaccines.		1		3	2	3				
3: Strong contribution, 2: Average contribution , 1: Low contribution											
13. Books recommended:											
1. William, E. Paul (1989) Fundamental Immunology, 2nd Edition Raven Press, New York.											
2. William, R. Clark (1991) the Experimental Foundations of Modern Immunology (4th Edition) John Wiley and Sons, New York.											
2 Devis Lemma alson A. K. Althea and A. H. Lishtman, Coundary W.D. Company											

- 3. Basic Immunology, A.K. Abbas and A.H. Lichtman, Saunders W.B. Company
- 4. Fundamentals of Immunology, W. Paul, Lippincott Williams and Wilkins
- 5. Immunology, W.L. Anderson, Fence Creek Publishing (Blackwell).
- 6. Immunology: A Short Course, E. Benjamin, R. Coico and G. Sunshine, Wiley-Liss Inc.

PO-PSO	5	02	03	P04	PO5	PO6	P07	PS01	POS2	PSO3	PSO4
СО	P	РО	Ы								PS
CO1	3	1					3	3	2		
CO2	3	1					3	3	3	2	
CO3	3	1				2	3	3	3	3	
CO4	3	1			2		3	3	3	2	
CO5	3	1		3	2		3	3	3	2	1
BS211	3	1		1	1	1	3	3	3	2	1

B. Sc	<mark>:. BIOTECH</mark>	NOLOGY	Y 2 nd y	year/ 4 th	semester												
1. Na	me of the De	partment	: Bios	ciences													
2. Co	ourse Name		М	OLECU	ULAR BIO	LOGY					L		Т			Р	
3. Co	ourse Code		B	S 212							3		1			0	
4. Ty	pe of Course	e (use tick	mark	s)		Core	()		Foundat	tion (Course ()	D	epart	tmei	ntal El	ectiv	e ()
5. Pr	e-requisite (i	if any)	10+2	with Bio	ology	6. Fre	quency (use	tick marks)	Even (J)	Odd ()	Either	Sem	()	Eve	ry Se	m ()
7. To	otal Number	of Lectur	es, Tu	torials,	Practicals												
Lect	ures = 30					Tutor	rials = 10			Prac	tical = 00)					
8. CO	OURSE OBJ	ECTIVE	S: The	e objecti	ive of this c	course i	s to develop	the unders	tanding of	conc	cept of ge	ene, ps	seudo	gen	ie, cry	ptic g	gene
	split gene, D																
	okaryotes ar				anslation ar	nd trans	scriptional m	echanism a	nd gene	expr	ession ir	proka	ryote	s us	sing La	ap op	eron
	in Eukaryote DURSE OUT																
	the successf				arners will	develon	following at	tributes:									
	COURSE					act crop	<i>jono , </i>	ATTRIBUT	ES								
	COME (CO)																
	CO1		and co	oncept o	of gene, ps	eudoge	ene, cryptic	gene and sp	lit gene								
	CO2	Understa	and D	NA repl	lication and	l regula	tion in proka	aryotes and	eukaryotes	6							
	CO3	Understa	and Tr	ranscrip	otion in prol	karyote	s and eukar	yotes, Trans	lation in p	rokaı	ryotes ar	d euka	aryote	es			
	CO4	Understa	and Po	ost tran	slation and	l transc	riptional me	chanism.									
	CO5	Understa	and G	iene exp	pression in	prokary	yotes using	Lap operon	and in Euk	aryo	otes by T	rp ope	ron.				
	J nit wise det a																
Unit-1				ectures				Central Do									
	anization of									ptic g	genes, Ir	sertio	n eler	nen	ts and		
trans Unit	sposons. Ge			n and e ectures				DNA Replic									
	aryotic and									nd R	olling cire						
Unit	-	Number		-	-			Franscriptio			oning on t						
	scription in				Eukaryote		Mechanism,	•	rs and RN	Anc	lymeras	e tran	scrint	ion	factor	2 Po	st.
	criptional mo					<i>.</i>	viccitariisiii,	TTOMOLO		л ро	nymeras	5, tran	Script	1011	actor	5, 1 0	51
Unit				ectures		Title	of the unit:	Genetic c	ode								
	erties and V		/pothe	esis. Tra	anslation: N	lechan	ism of trans	lation in Prol	karyotes a	nd E	ukaryote	s, Pos	t-tran	slat	ional		
mod Unit	ifications of		an of I			Title	of the	Demulation	of Como a								
				ectures				Regulation				- Eulea	m voto	<u>.</u> .			
	ulation of Ge scriptional ac						concept (Lac	c), Regulatio	n of Gene	expr	ession ir	і Ецка	ryote	s:			
)-PO mappi					-											
00											PO		DOJ	Р	DOT	DOC	DOT
COs					At	tributes	5					PO2	PO3	04	PO5	PO6	PO7
CO1	Understand	concept o	fgene	, pseudo	gene, crypti	ic gene d	and split gene	?			3	1					1
CO2							otes and euka				3	1					1
CO3	Understand T	Franscript	ion in	prokary	otes and euk	karyotes	, Translation	in prokaryot	es and euka	ryote	es 3	1					1
CO4	Understand I	Post transl	ation a	and tran	scriptional	mechan	ism.				3	1					1
	Understand (Eukaryotes by	v Trp opero	n.	3	1					1
				3: Str	ong contril	oution.	2: Average c	ontribution ,	1: Low con	ntrih	oution	1					
13. B	ooks recom	nended:			0	······································		, , , , , , , , , , , , , , , , , , , ,									
1			ne Clc	oning an	d manipulat	ion, Car	nbridge Univ	ersity Press,	USA								
2				-	xford Unive		-	,,									
3						•		spring Harbo	r Laborator	y Pre	ess, New `	York, U	JSA				

- 4. Walker J.M. and Gingold, E.B. (1983) Molecular Biology & Biotechnology (Indian Edition) Royal Society of Chemistry U.K
- 5. Karp.G (2002) Cell & Molecular Biology, 3rd Edition, John Wiley & Sons; INC.

PO-PSO	0	02)3	74)5	96	70	PS01	POS2	SO3	PSO4
СО	Ы	P02	PO3	P04	PO5	PO6	PO7	PS	РО	PS	PS
CO1	3	1					1	3	3		
CO2	3	1					1	3	3		
CO3	3	1					1	3	3		
CO4	3	1					1	3	3		
CO5	3	1					1	3	3		
BS212	3	1					1	3	3		

B. So	. BIOTECHN	OLOG	GY 2 nd year/ 4 th semester	•									
1. Na	me of the Dep	artme	nt: Biosciences										
	ourse Name		FUNDAMENTALS	OF E	NVIRONMENTAL BIOTECHN	OLOGY	L		Т			Р	
3. Co	ourse Code		BS 213				3		1			0	
4. Ty	pe of Course (use tic	k mark)		Core (<i>I</i>)	Foundation	n Course	Γ	Depar	tment	al El	ectiv	e ()
	e-requisite (if		10+2 with Biology		6. Frequency (use tick marks)	Even (/)	Odd ()	Eithe	er Sen	n()	Eve	ry Se	em ()
		f Lectu	res, Tutorials, Practical	S									
	ures = 30				Tutorials = 10	Practical = (
					rse is to develop the understand	ling of enviro	nmental	biote	echno	logy,			
	urse outco			g, co	nventional and modern fuels								
				II dev	elop following attributes:								
	COURSE	course		u ucr									
	COME (CO)				ATTRIBUTES								
		Have	knowledge of modern f	uels a	and their environmental impact								
		Comp	rehend the Structural a	nd Fu	unctional dynamics of microbes,	their diversit	y, activity	y and	d grov	wth, c	omm	unity	у
					bioreporters, Microchips. Also k		ethanog	enes	is: m	ethar	oger	ic,	
					eria- technical processes and co								
			•		d Phytoremediation of soil & wa						-		and
		-			degradation of lignin and cellulo	-	-						
					gradation of aromatic and chlori								
	COA		-		unicipal waste and Industrial eff				-	oidm	tic ar	a	
					in the enrichment of soil, algal a				,	-	• • • • •		- 1
	CO5		•		chment of ores by microorganisn		per, and	Urai	nium)	, Env	ironn	nenta	ai
		-		odifie	d microbes, plants and animals.								
	Init wise detail												
Unit-			ber of lectures = 08	Math	Title of the unit: Convention			- 41	0.00				
	ar to alcohol G			ivietn	anogenic bacteria, Biogas, Micro	obiai nydroge	en Produ	ction	i, Cor	iversi	on oi		
Unit			ber of lectures = 08		Title of the unit: Structural a	nd Function	al dvnar	nics	of m	icrob	bes		
				ng, bi	osensors, bioreporters, Microch								
	-		ative bacteria- technical	proc			-			-			
Unit	-		er of lectures = 08		Title of the unit: Bioremediat								
					spills, heavy metals and deterge			•					
					esticides and other toxic chemic	als by microc	organism	s, D	egrad	lation	of		
Unit			hydrocarbons and pet ber of lectures = 08	roieu	Title of the unit: Waste Mar	nagement							
				uente	s, Biofertilizers: Role of symbiotic		iotic nitro	nen	fixinc	i haci	eria	n	
			gal and fungal biofertili			e and acymp		gon	inving	, buo	ona		
Unit	-5	Num	ber of lectures = 08		Title of the unit: Bioleaching	l							
			icroorganisms (gold, co	opper	, and Uranium), Environmental	significance o	of Geneti	cally	mod	ified ı	nicro	bes,	,
	ts and animals												
	D-PO mapping	5											
COs				Attri	butes		PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1		~ ~	nodern fuels and their en		*		3	1				3	1
					cs of microbes, their diversity, activ		h, 3	1				2	1
CO2					eporters, Microchips. Also know a								
	conditions	sis. me	inanogenic, aceiogenic di	na jer	mentative bacteria- technica proce	sses ana							

	Gain insight on Bioremediation and Phytoremediation of soil & water contaminated with oil spills,	3	1				3	3
CO3	heavy metals and detergents and us of microbes in degradation of lignin and cellulose using and of pesticides and other toxic chemicals by microorganisms, Degradation of aromatic and chlorinated							
0.05	pesticides and other toxic chemicals by microorganisms, Degradation of aromatic and chlorinated							
	hydrocarbons and petroleum products.							
	Have knowledge on treatment of municipal waste and Industrial effluents, Biofertilizers: Role of	3	1				3	3
CO4	symbiotic and asymbiotic nitrogen fixing bacteria in the enrichment of soil, algal and fungal							
	biofertilizer (VAM).							
CO5	Have basic understanding of Enrichment of ore by microorganism (gold, copper, and Uranium), Environmental significance of Genetically modified microbes plants and animal	3	1		1	2	3	1
05	Environmental significance of Genetically modified microbes plants and animal							
	3: Strong contribution, 2: Average contribution, 1: Low contribution							
13.	Books recommended:							
1.	Microbial Biotechnology (1995) Alexander n. Glazer Hiroshi Nikaido W.H.Freeman and Company							
	Male 1. 1. (Alter 1. 1. Control Active Control	T D.		1 4 0 1	(D			

2. Molecular biotechnology: Principles and Applications of Recombinant DNA –Bernaral R. Glick and Jack J. Pastemak ASM Press. Washington, D.C (1994).

3. Fungal Ecology and Biotechnology (1993) Rastogi Publications, Meerut.

Course Articulation Matrix: (Mapping of COs with POs and PSOs)

PO-PSO	0	02)3	74)5	96	70	S01	OS2	03	PSO4
СО	Ы	P02	PO3	P04	PO5	PO6	P07	PS	РО	PS	PS
CO1	3	1				3	1	3	3	3	1
CO2	3	1				2	1	3	3	3	1
CO3	3	1				3	3	3	3	3	1
CO4	3	1				3	3	3	3	3	1
CO5	3	1		1	2	3	1	3	3	3	1
BS213	3	1		1	1	3	2	3	3	3	1

B. Sc. BIOTECHN	OLOG	GY 2 nd year/ 4 th semester									
1. Name of the Dep	artme	nt: Biosciences									
2. Course Name		INDUSTRIAL BIOTECH	INOLOGY		L		Т			Р	
3. Course Code		BS 214			3		1			0	
4. Type of Course (use tic	k mark)	Core (<i>J</i>)	Foundation	Course ()	Ľ	Depart	ment	al Ele	ctive	e ()
5. Pre-requisite (if	any)	10+2 with Biology	6. Frequency (use tick marks)	Even (\boldsymbol{J})	Odd ()	Eith	er Sen	n ()	Every	Ser	m ()
	Lectu	res, Tutorials, Practicals									
Lectures = 30			Tutorials = 10	Practical = 0 (
8. COURSE OBJE biotechnology.	CTIVI	ES: After completion of the co	ourse, a student will be able to	develop the u	Inderstar	nding	of ind	dustri	al asp	ect	s of
9. COURSE OUTCO											
· ·	course	e completion, learners will dev	elop following attributes:								
COURSE OUTCOME (CO)			ATTRIBUTES	S							
		the basics of industrial ferme									
CO2			nentation medium and steriliza		S						
CO3			n process, types of fermentatio								
CO4			opment, upstream and downst	tream process	ing						
		about Production of Industria	al fermented products								
10. Unit wise detail											
Unit-1		ber of lectures = 08	Title of the unit: Introduction								
		biotechnology, Basic princip nance of strains improvemer	bles of fermentation technology nt.	/, Screening a	nd isolati	on o	f				
Unit-2	Num	ber of lectures = 08	Title of the unit: Fermentati Sterilization techniques	ion media, Na	itural an	d sy	ntheti	ic me	edia,		
Heat, Radiation an	d Filtra	ation method.									
Unit-3	Numb	per of lectures = 08	Title of the unit: Fermenters					on, To	empe	ratu	ire
Shake flask fermer purification of produced		, Downstream processing (D	OSP), Disintegration of cells, Se	eparation, Extr	action, C	Conce	entrati	ion a	nd		
Unit-4		ber of lectures = 08	Title of the unit: Process	Development							
Shake flask fermer purification of produced		, Downstream processing (D	SP), Disintegration of cells, Se	eparation, Extr	action, C	Conce	entrat	ion a	nd		
Unit-5		ber of lectures = 08	Title of the unit: Production	n of Microbial	product	ts					
Brief account of the	e follov	wing products obtained by in-	dustrial microbiological fermen		•		Beer,	Org	anic a	cid:	
11. CO-PO mapping			ic acid, Vitamin: vitamin B12.								
COs		Attril	butes		PO1	PO2	PO3	PO4	PO5P	<mark>06</mark>]	PO7
	ics of i	ndustrial fermentation technolo	 VgV		3	1			1	2	3
	ndersta	unding of Fermentation media a	<i>ind sterilization techniques</i>		3	1				2	3
	ıdustri	al fermentation process, types of	of fermentation		3	1				2	3
		process development, upstream			3	1				2	3
CO5 Know about p	roduct	ion of industrial fermented prod	ducts		3	1				2	3
		3: Strong contribution	on, 2: Average contribution , 1:	Low contribut	ion				I		
12. Books recomme	ended:										
1. Bisen P.S (1994) Fron	tiers in Microbial Technology,	1st Edition, CBS Publishers. Bool	ks (P) Ltd.							
		•••	Microbiology, 2nd Edition, Panin								
3 Claser AN & N	liloido	H (1005) Migraphiel Distachnol	logy W H Freeman & Co								

3. Glaser A.N & Nilaido.H (1995) Microbial Biotechnology, W.H Freeman & Co.

4. Kumar H.D (1991) A text book on Biotechnology (2nd Edition). Affiliated East West Press Private Ltd. New Delhi.

- 5. Prescott & Dunn (2002) Industrial Microbiology, Agrobios (India) Publishers. Publishers, Boston. Publishing Corp.
- 6. Stanbury P.F, Whitaker H, Hall S.J (1997) Principles of Fermentation Technology., Aditya

PO-PSO	0	02)3	04)5	06	70	0	POS2	03	PSO4
СО	PG	P02	PO3	Ы	PO5	Ы	P07	PS	DG	PS	PS
CO1	3	1			1	2	3	3	3	3	1
CO2	3	1				2	3	3	3	3	1
CO3	3	1				2	3	3	3	3	
CO4	3	1				2	3	3	3	3	1
CO5	3	1				2	3	3	3	3	1
BS214	3	1			1	2	3	3	3	3	1

B. Sc	. BIOTECH	NOLOG	Y 2 nd year/ 4 th semester	r									
		partme	nt: Biosciences										
	ourse Name		FOOD BIOTECHN	OLO	GY		L		Т			P	•
	ourse Code		BS 215				3		1			0	
4. Ty	pe of Course	(use tic	k mark)		Core (<i>I</i>)	Foundation	Course ()		epartr		tal El	ectiv	ve ()
	e-requisite (i	•	10+2 with Biology	_	6. Frequency (use tick marks)	Even (1)	Odd ()	Eit	her Ser	n (Eve	ry S	em ()
		of Lectu	res, Tutorials, Practica	ls			0.0						
8. CC study proce The o	/ing this pap essing and p course also	er is hig preserva extends	ghlighted reflecting on tion techniques. The s comprehensive know	the cu studen ledge	Tutorials = 10 rt an insight into the classification urrent changing needs of the stu ts will acquire knowledge about about international and national urse completion, learners will deve	idents by pro the production food laws ar	s and add oviding th on of ferr nd standa	ne lat nente ards.	test inf ed food	orm	atior	n of	food
C	OURSE COME (CO)				ATTRIBUTES								
					ns and food borne illness.								
			n food processing and		among different components of b	overages to	chnology	,					
					and sampling methods including	-			scone	colc	nv c	ount	le l
	COA				oscopic count, Microbiological e							ourn	.0,
	CO5		and the food laws and tion and licensing qual		lards, Quality and safety assuratistems.	nce in the foo	od and d	airy i	ndustr	у, В	IS pr	odu	ct
10. U	Jnit wise de	tailed c	ontent										
Unit-1		Numb	er of lectures = 08		Title of the unit: Classificatio			redie	ents o	ffo	od, N	licro	obial
New	protein foods	s SCP, I	mushroom, food yeast	s, alga	<mark>role in food process, operatio</mark> al proteins. Food additives like co			vitam	nins.				
Unit			er of lectures = 08		Title of the unit: General prin								
			and its prevention or c h harmful microorganis		; Food processing and Preserva								
Unit			r of lectures = 08		Title of the unit: Organisms a foods and beverages		e for pro	duc	tion of	fer	men	ted	
pickle	es, wine, che	ese, yo	gurt and vinegar. Ther	apeut	ic and nutritive value of fermente								
Unit	-		er of lectures = 08		Title of the unit: Determinin foods								
micro	scopic coun	t, Microl	biological examination					numt	oers (N	1PN), Dii	rect	
Unit-			er of lectures = 08		Title of the unit: Food laws a			1	DIC.				
Servi	ces and Cer	tificatior		andar	ds; Quality and safety assurance	e in food and	dairy inc	dustr	y; BIS	Lab	orate	ory	
	. CO-PO ma	pping					DOC	DCA	DOO				DC-
COs	י מ <u></u>		C : : 1.C	Attri					PO3 P	'04	PO5		-
CO1	0	U	f microorganisms and foo sing and preservation te				3	1					3
CO2		_		-	es. components of beverages technolog	21/	3	1 1					3 3
CO3	-				methods including membrane filters			1 1					3 3
CO4		ts, most j	probable numbers, Direc		oscopic count, Microbiological exa	· ·	5	T				4	5
CO5	Understand	the food		-	nd safety assurance in the food and ms.	dairy industry	y, 3	1	1	2	3	2	3

3: Strong contribution, 2: Average contribution, 1: Low contribution

13. Books recommended:

- 1. Frazier, Food Microbiology, TMH Publications.
- 2. May JM "Modern food microbiology", CBS Publishers and distributors, New Delhi.
- 3. Heller, Genetic Engineering of Food: Detection of Genetic Modifications Wiley Publications.
- 4. Rehm, Biotechnology Set Wiley Publications
- 5. Potter NN and Hotchkiss "Food Science" CBS Publ.
- 6. Potter N "Technology of Food preservation", CBS.
- 7. Marwaha SS and Arora "Food processing: Biotechnological Applications", Asitech Publ.
- 8. Hobbs BC and Roberts D "Food poisoning and food hygiene", Edward Arnold (A division of Hodder and Stoughton), London.
- 9. Robinson RK "The microbiology of milk", Elsevier Applied Science, London.

Course Articulation Matrix: (Mapping of COs with POs and PSOs)

PO-PSO	01	02	PO3	04)5	PO6	70	S01	0S2	03	PSO4
СО	Ъ Ч	P02	РС	P04	PO5	Ы	PO7	PS	РО	PS	PS
CO1	3	1				1	3	3	2	3	3
CO2	3	1				1	3	3	2	3	1
CO3	3	1				1	3	3	2	3	
CO4	3	1				2	3	3	2	3	3
CO5	3	1	1	2	3	2	3	3	2	3	3
BS215	3	1		1	1	3	2	3	2	3	2

		GY 2 nd year/ 4 th sem	ester												
		ent: Biosciences			1										
2. Course	Name	IMMUNOLOGY	LAB		L		Т]	P					
3. Course	Code	BS216	Tutorials=00 Practical=10 course aims to develop the understanding of basics of immunology, types of Blood group ny Double diffusion (ODD) and Separation of serum from blood & precipitation tion, learners will develop following attributes: ATTRIBUTES Blood grouping and analyze differential counting of WBC and detergent lysis of RBC and analyze Dot Elisa, ELISA . wwledge of and can perform Ouchterlony Double diffusion assay. and analyze separation of serum from blood & precipitation of Immunoglobulin.												
4. Type of	f Course (use ti	ck mark)	Core(J)	Foundat	tion Cou	rse ()	Depar	tmenta	l Electi	ve()					
5.Pre-rec	uisite (if any)	10+2 with Biology	6.Frequency(use tick marks)	Even (/)	Odd ()	E	Either S	em ()	EverySe	em()					
7.TotalN	umberofLectur	es,Tutorials,Practica	ls												
	Lecture	s=00	Tutorials=00]	Practica	l=10							
cell cou Immunog	nts, ELISA, (Duchterlony Double													
		se completion, learne	rs will develop following attribut	tes:											
	E OUTCOME (CO)		ATTI	RIBUTES	5										
	~~·		ping												
				and det	ergent ly:	sis of R	BC								
CO2 Perform and analyze Dot Elisa, ELISA .															
	CO4	Have knowledge of	Double of	diffusion	assay.										
	CO5	Perform and analyz	e separation of serum from blo	ood & pre	ecipitatio	n of Im	nunogl	obulin.							
10. Sylla		, , , , , , , , , , , , , , , , , , , 	•				Ŭ								
		Blood grouping													
		Differential Count of													
	•	Detergent lysis of RI	BC												
	I · ·	Dot Elisa	41												
	L	ELISA – Demonstra													
		Ouchterlony Double	from blood & precipitation of	Immuno	alobuline										
) mapping			minuno	giobulins										
COs		Attrib	utes	PO1	PO2	PO3	PO4	PO5	PO6	PO					
CO1	Analyze Blood	grouping		3	3	1				3					
CO2	Perform and a lysis of RBC	nalyze differential co	unting of WBC and detergent	3	3	1				3					
CO3	• •	nalyze Dot Elisa, ELIS	5A.	3	3	1				3					
CO4		•	m Ouchterlony Double diffusior	<i>i</i> 3	3	1				3					
CO5		• • •	erum from blood & precipitation	1 3	3	1				3					
	v		ribution, 2: Average contribution	on , 1: Lo	w contrib	oution	1		I	L					
				,											

PO-PSO	0)2)3	04)5	06	70	PS01	POS2	03	PSO4
СО	Ы	PO2	PO3	P04	PO5	Ы	P07	PS	РО	PS	PS
CO1	3	1				3	1	3	3	3	1
CO2	3	1				2	1	3	3	3	1
CO3	3	1				3	3	3	3	3	1
CO4	3	1				3	3	3	3	3	1
CO5	3	1		1	2	3	1	3	3	3	1
BS216	3	1		1	2	3	2	3	3	3	1

1.Name of the Departm	ent: Biosciences							
2. Course Name		D ENVIRONMENTAL GY LAB		L	,	Г		Р
3. Course Code	BS217	-		0		0		6
$\frac{1}{4}$ Type of Course (use the function of Course (use the function of Course (use the function of the fun	ick mark)	Core(J)	Foundat	tion Course () Dep	artment	al Elect	ive()
5.Pre-requisite (if any)	10+2 with Biology	6.Frequency(use tick marks)	Even (/)	Odd ()	Either	Sem()	EveryS	em()
7. TotalNumberofLectu	res,Tutorials,Practica	ls			1			
Lecture	es=00	Tutorials=00			Practi	cal=10		
of Nitrogen, citric aci	d, lactic acid, heavy	aims to develop the understa metals, BOD and COD, and e	examinati					
After the successful cour COURSE OUTCOME	rse completion, learne	rs will develop following attribu	tes:					
(CO)		ATT	RIBUTES	5				
CO1	Culture algae and fu	ıngi						
CO2	Perform and analyz	e estimation of citric acid and	lactic aci	d.				
CO3	Perform and analyz	e estimation of Total Nitroger	n by Kjelda	ahl method.				
CO4	Can perform Bacter	ial Examination of Water by N	/IPN Cour	nt Method a	nd estima	te of BO	D and C	COD
CO5	Estimate heavy met	als (Iron, chromium and arse	nic) in wa	ter sample				
10. Syllabus								
Exp-01	Algal and fungal cult	ture – Yeast and Aspergillus						
Exp-02	Estimation of citric a	cid from Aspergillus culture.						
Exp-03	Estimation of lactic a							
Exp-04		Nitrogen by Kjeldahl method.						
Exp-05		on of Water by MPN Count Me	ethod					
Exp-06	Estimation of BOD a	ind COD (2 Samples)						
Exp-07	Estimation of heavy	metals (Iron, chromium and a	arsenic) ir	n water sam	ole.			
1. CO-PO mapping								
COs	Attribu	tes	PO1	PO2 P	03 PO	PO5	PO6	PO
CO1 Culture algae			3	3	1		3	3
•	• •	tric acid and lactic acid.	3	3	1			3
CO3 Perform and method.	analyze estimation of	f Total Nitrogen by Kjeldahl	3	3	1		2	3
CO4 Can perform I		of Water by MPN Count		3	1		3	3
Method and es	stimate of BOD and CO)D						
CO5 Estimate heaves samples.	vy metals (Iron, chro	omium and arsenic) in water	3	3	1		3	3
sumpres.								
	<u>3: Strong contr</u>	ribution, 2: Average contributi	on l'La	w contributi	on			

PO-PSO	01	02	03	04	05	06	70	0	S2	03	PSO4
СО	Ы	Я	Ы	Ы	Ы	Ы	P07	PS	РО	PS	PS
CO1	3	3	1			3	3	3	3	3	2
CO2	3	3	1				3	3	3	3	1
CO3	3	3	1			2	3	3	3	3	1
CO4	3	3	1			3	3	3	3	3	2
CO5	3	3	1			3	3	3	3	3	1
BS217	3	3	1			3	3	3	3	3	2

		B. Sc. BIOT	TECHNOLOGY 3rd year/ 5th	semester							
1. Na	me of the Dep	artment: Biosciences									
2. Co	ourse Name	ANIMAL BIOTECHNOL	.OGY		L		Т			Р	
3. Co	ourse Code	BS 301			3		1			0	
4. Ty	vpe of Course ((use tick mark)	Core (J)	Foundation	Course ()	D	epar	ment	al El	ectiv	/e ()
	e-requisite (if	• ·	6. Frequency (use tick marks)	Even ()	Odd (1)	Eithe	er Sen	n()	Eve	ry Se	em ()
		f Lectures, Tutorials, Practicals									
	ures = 30		Tutorials = 10	Practical =							
		CTIVES: The course has been de I culture, Production of transgenic				chnol	ogy t	echni	ques	, the	eir
9. CO	URSE OUTCO	OMES (CO):									
		course completion, learners will dev	velop following attributes:								
	COURSE		ATTRIBUTES								
001	COME (CO)	Get proper knowledge about the l	pistony and Scope of Animal Tiss	ue Culture (`ulturo M	lodia	Sim	ulatir	a na	tura	1
	(())	conditions for growth of animal ce				ieuia	, 0111	ulatii	iy na	lura	1
	CO2	Gain knowledge about Primary C cell lines, Monolayer formation, S	-	Culture, trans	formed a	anima	al cel	ls and	d con	itinu	ous
	CO3	Learn about transfection of anima Microinjection, In vitro fertilization	and Stem cell technology.								
	CO4	Learn about the basics of express	sion of Cloned proteins in animal	cells and Pro	oduction	of Va	accin	es in	anim	al C	ells.
	CO5	Have knowledge of Production ar	d Applications of monoclonal ant	tibodies, and	Transge	enic A	Anima	als			
10. U	Init wise detail	ed content									
Unit-1	I	Number of lectures = 08	Title of the unit: History and	Scope of Ar	imal Tis	ssue	Cult	ure			
		nulating natural conditions for grov Im in media, Chemical defined me		: Plasma Clo	ot, biolog	ical f	luids	tissu	e ext	ract,	,
Unit		Number of lectures = 08	Title of the unit: Primary Cult								
		ing, isolation and mechanical disa I lines. Monolayer formation, Sync		econdary Cul	ture: trai	nsfor	med	anim	al ce	lls	
Unit	-3	Number of lectures = 08	Title of the unit: Transfection	of animal ce	ell lines						
		s and Transplantation of Cultured	-								
Unit		Number of lectures = 08	Title of the unit: Expression								
Expre Cells		over production and downstream	processing of the expressed pro	oteins, Produ	ction of	Vaco	cines	in a	nima	l	
Unit		Number of lectures = 08	Title of the unit: Production a	nd Applicatio	ns of mo	nocl	onal a	antibo	odies		
		nsgenic Animals: Techniques and	Applications and Transgenic mic	ce and sheep).						
	D-PO mapping										_
COs			butes		PO1		PO3	PO4		206	
CO1		· · ·	pe of Animal Tissue Culture, Cultu al cells.	re Media,	3	1			1		2
CO2		ge about Primary Culture, cell lines Il lines. Monolayer formation, Synchi		l animal cells d	und 3	1			2		2
CO3	Learn about	transfection of animal cell lines, S njection, In vitro fertilization and Ster	electable markers and Transplant	ation of Cultur	red 3	1		2	3		3
CO4		he basics of expression of Cloned pro		ı of Vaccines i	n 3	1		2	3		3
CO5		lge of Production and Applications of	f monoclonal antibodies, and Transg	genic Animals	3	1		1	3	1	3

3: Strong contribution, 2: Average contribution , 1: Low contribution

12. Books recommended:

- 1. Ian Freshney Animal cell culture.(4th Edition)
- 2. Buttler. Elements of Biotechnology P.k. Gupta (1st Edition -2000) Rastogi Publications.
- 3. Davis, Cell culture techniques.

Course Articulation Matrix: (Mapping of COs with POs and PSOs)

PO-PSO	5	02	PO3	P04	PO5	PO6	70	PS01	S2	03	PSO4
СО	P01	P02	Ы	Ы	Ы	Ы	P07	PS	РО	PS	PS
CO1	3	1			1		2	3	3	3	
CO2	3	1			2		2	3	3	3	
CO3	3	1		2	3		3	3	3	3	
CO4	3	1		2	3		3	3	3	3	1
CO5	3	1		1	3	1	3	3	3	3	1
BS301	3	1		2	3	1	3	3	3	3	1

7. Total Number of Lectures, Tutorials, Practicals Lectures = 30 Tutorials = 10 Practical = 00 8. COURSE OBJECTIVES: The course has been designed to make students aware of basic plant biotechnology techniques an	P 0 tive () Sem ()
3. Course Code BS 302 3 1 4. Type of Course (use tick mark) Core (𝔅) Foundation Course () Departmental Election 5. Pre-requisite (if any) 10+2 with Biology 6. Frequency (use tick marks) Even () Odd (𝔅) Either Sem () Every 7. Total Number of Lectures, Tutorials, Practicals Tutorials = 10 Practical = 00 Secourse (Daste Course has been designed to make students aware of basic plant biotechniques and second seco	0 tive ()
4. Type of Course (use tick mark) Core (I) Foundation Course () Departmental Electric 5. Pre-requisite (if any) 10+2 with Biology 6. Frequency (use tick marks) Even () Odd (J) Either Sem () Every 7. Total Number of Lectures, Tutorials, Practicals Tutorials = 10 Practical = 0 Very 8. COURSE OBJECTIVES: The course has been designed to make students aware of basic plant biotechniques and the students aware of basic plant biotechniques aware of basic plant biotechniques and the students aware of basic plant biotechniques aware of b	tive ()
5. Pre-requisite (if any) $10+2$ with Biology6. Frequency (use tick marks)Even () $Odd (I)$ Either Sem ()Every7. Total Number of Lectures, Tutorials, PracticalsTutorials = 10Every8. COURSE OBJECTIVES: The course has been designed to make students aware of basic plant biotechniques and	
7. Total Number of Lectures, Tutorials, Practicals Lectures = 30 Tutorials = 10 Practical = 00 8. COURSE OBJECTIVES: The course has been designed to make students aware of basic plant biotechnology techniques an	Sem ()
Lectures = 30Tutorials = 10Practical = 008. COURSE OBJECTIVES: The course has been designed to make students aware of basic plant biotechnology techniques an	
8. COURSE OBJECTIVES: The course has been designed to make students aware of basic plant biotechnology techniques an	
	l their
applications in plant growth and development, and large scale production of natural products from plant source 9. COURSE OUTCOMES (CO): After the successful course completion, learners will develop following attributes:	
COURSE ATTRIBUTES	
CO1 Learn about media preparation for In-vitro propagation of plants and different aseptic techniques used therin.	
CO2 The students will learn the role of techniques haploid plant production and its significance.	
CO3 The students will learn about the protoplast isolation and somatic hybridization of protoplast and its applicatio	1.
CO4 The students will learn about the role of plant tissue culture in agriculture, horticulture and forestry	
CO5 The students will learn about the transgenic plants and different strategies to make recombinant and its application	tion.
10. Unit wise detailed content	
Unit-1 Number of lectures = 08 Title of the unit: Aseptic Techniques	
Aseptic Techniques, Nutrient media, and use of growth regulators (Auxins, Cytokinins and Gibberellins). Callus and suspension culture.	
Unit-2 Number of lectures = 08 Title of the unit: Haploid plant production	
Microspore and ovule culture, Organ Culture and their applications, Organogenesis and Somatic Embryogenesis: Techniques a applications.	ıd
Unit-3 Number of lectures = 08 Title of the unit: Protoplast Culture	
Somatic hybridization, methods of protoplast fusion chemical and electro fusion, practical application of somatic hybridization. Somaclonal variation and their significance, <i>In vitro</i> production of secondary metabolites: Techniques and significance.	
Unit-4 Number of lectures = 08 Title of the unit: Role of tissue culture in agriculture, horticulture a forestry, Transgenic plants, Technique of transformation	ıd
Agrobacterium-mediated and physical methods (Microprojectile bombardment and electroporation).	
Unit-5 Number of lectures = 08 Title of the unit: Applications	
Applications of transgenic plants, Edible Vaccines.	
11. CO-PO mapping	
COsAttributesPO1PO2PO3PO4PO5PO5CO1Learn about media preparation for In-vitro propagation of plants and different aseptic techniques3142	
CO1 <i>Learn about media preparation for In-vitro propagation of plants and different aseptic techniques</i> 3 1 2 <i>ised therein.</i>	1
CO2The students will learn the role of techniques haploid plant production and its significance.312	1
	1
CO3The students will learn about the protoplast isolation and somatic hybridization of protoplast and its application.312	
CO3application.CO4The students will learn about the role of plant tissue culture in agriculture, horticulture and forestry31212	3
CO3application.II<	
CO3application.IIIICO4The students will learn about the role of plant tissue culture in agriculture, horticulture and forestry3121ICO5The students will learn about the transgenic Plants and different strategies to make recombinant and3112I	

PO-PSO	6	02	03	94)5	06	70	6	OS2	SO3	PSO4
СО	Р	P02	РО	Ы	PO5	Ы	P07	PS	РО	PS	PS
CO1	3	1				2	1	3	3	3	
CO2	3	1				2	1	3	3	3	
CO3	3	1				2	1	3	3	3	
CO4	3	1	2	1		2	3	3	3	3	
CO5	3	1	1		2	2	2	3	3	3	1
BS302	3	1	1	1	1	2	2	3	3	3	1

B. Sc	. BIOTECHN	OLOG	GY 3 rd y	year/ 5 th se	mester										
	me of the Dep	artme													
	ourse Name		GENI	ETIC ENG	GINEERING	G			L		Т			P	
3. Co	ourse Code		BS 3	303					3		1			0	
4. Ty	pe of Course (use tic	ck mark	x)		C	ore (1)	Foundation	Course () I	Depar	tment	al El	ectiv	e ()
5. Pr	e-requisite (if	any)	10+2	with Biolog	gy	6.]	Frequency (use tick marks)	Even()	Odd (J)Eith	er Sen	n()	Eve	ry Se	em ()
	tal Number of	ⁱ Lectu	ures, Tu	torials, Pr	acticals										
	ures = 30						utorials = 10	Practical =					_		
vecto (;	ors, Screening SDM), Nucleic	and s c acid :	selectio sequer	on of recor	nbinants, T	Fechi	ned to make students aware on niques used as Polymerase of -DNA techniques								
	RSE OUTCON					,									
		course	e compl	etion, lear	ners will dev	velop	o following attributes:								
	COURSE COME (CO)						ATTRIBUTES								
		clonin	ng vecto	ors.			a manipulative enzymes: Res	-							
	CO2	Trans	formati	on			uction of recombinant DNA m		U				-		
	CO3	cloned	earn about screening and selection of recombinant host cells, Gene Libraries, cloning techniques, Expression of oned DNA earn about the basics of Electrophoretic techniques, Polymerase chain reaction (PCR), Site directed mutagenesis												
	CO4	(SDM)	arn about the basics of Electrophoretic techniques, Polymerase chain reaction (PCR), Site directed mutagenesis DM), Nucleic acid sequencing: Blotting techniques. ve knowledge of Application of r-DNA technique in human health, Production of Insulin, Production of												əsis
	CO5		DM), Nucleic acid sequencing: Blotting techniques. ave knowledge of Application of r-DNA technique in human health, Production of Insulin, Production of combinant vaccines: Hepatitis B, Production of human growth hormone.												
10. U	nit wise detail	ed con	ntent												
Unit-1		Num	nber of	lectures	= 08	Ti	tle of the unit: DNA manipu	lative enzy	mes						
							tors: Plasmids, Bacteriophag	e and Chime	eric plas	mids					
Unit				lectures			<mark>tle of the unit: rDNA</mark> R332, pUC19), Isolation of pa	ocongor on	dvoetor		oroo	tion	fr D	NIA	
Trans	sformation of r				nods.			-						ΝA,	
Unit				ectures =			le of the unit: Screening and								
	inological scre in <i>E. coli</i> .	ening	g and co	olony hybri	dization, Ge	ene	Libraries: Genomic DNA and	cDNA clonin	ng techni	ques	, Expi	ressio	on of	clone	əd
Unit		Num	nber of	lectures	= 08	Ti	tle of the unit Techniques								
	rophoretic tec od, Blotting te						PCR), Site directed mutagene	esis (SDM),	Nucleic	acid	seque	encin	g: Sa	nger	's
Unit				lectures			tle of the unit: Applications								
Appli	cation of r-D	NA te	echniqu	e in hum			roduction of Insulin, Prod		combina	nt va	ccines	s: He	patitis	sВ,	
)-PO mapping	<u> </u>													
COs					Attri	ibute	es		PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	get proper kno and Gene clor	0	·	the DNA n	nanipulative	e enzy	ymes: Restriction enzymes and I	ONA ligases,	3	1					2
CO2		ge aboi	ut In vit	ro construc	ction of recor	ombin	nant DNA molecules, passenger	and vector	3	1					2
CO3		reenin	ng and s	election of	recombinant	t hos	st cells, Gene Libraries, cloning	techniques,	3	1					2
CO4		he basi	ics of El				Polymerase chain reaction (PCR techniques.	?), Site directe	ed 3	1					2

CO5 have knowledge of Application of r-DNA technique in human health, Production of Insulin, Production of recombinant vaccines: Hepatitis B, Production of human growth hormone.	3	1		2	2	1	3
3: Strong contribution, 2: Average contribution, 1: Low contribution	l						
13. Books recommended:							
 Glick, B.R & Pasternak J.J (1994) Molecular Biotechnology, Princi[ples and Applications of Recomb for Microbiology, Washington D.C Christopler H. (1995) Gene cloning and Manipulating, Cambridge University Press Nicholl, D.S.T (1994) An Introduction of Genetic Engineering, Cambridge University Press. Old. R.W. and Primrose, S.B. (186) Principles of Gene manipulation, An introduction to genetic engineering Scientific Publications Watson J.D. Hopkins, N.H Roberts, J.W.Steitz J. 			,			ety	
6. A and Weiner A.M(1988). Molecular biology of society for Microbiology7. Lewin b. (1994) Genes VI, New York, Oxford University Press							

PO-PSO	0)2	03	04)5	96	70	S01	POS2	SO3	PSO4
СО	Р	PO2	РО	Ы	PO5	PO6	P07	PS	РО	PS	PS
CO1	3	1					2	3	3	3	
CO2	3	1					2	3	3	3	
CO3	3	1					2	3	3	3	
CO4	3	1					2	3	3	3	
CO5	3	1		2	2	1	3	3	3	3	1
BS303	3	1		1	1	1	3	3	3	3	1

D.C.	. BIOTECH		V ard	m/ 5th annual	atom									
	me of the De				ster									
	urse Name	epai tine	1	AL BIOTH	CHNOL	OCV		L		Т			Р	
	ourse Code		BS 304					3		1			0	
	pe of Course	e (use tio		-		Core (J)	Foundation	-	Т)epar	tmen	tal El	Ů	
	e-requisite (i		1	th Biology		6. Frequency (use tick marks)	Even ()	Odd (I)		-				em ()
	tal Number			••	ticals						()		5	
	1res = 30					Tutorials = 10	Practical =	00						
8. CC	OURSE OBJ					signed to make students aware			nd v	iruse	s, Pa	tholog	gy of	f
	ases, Therap URSE OUTO			legal aspe	CIS									
				ion, learner	s will dev	elop following attributes:								
	OURSE			,										
OUTC	COME (CO)					ATTRIBUTES								
			-			of pathogenic microbes, protozo			dica	l bact	eriolo	ogy.		
	CO2					d medical mycology and preven								
	CO3					ormed, blood cancer, about the	brain as wel	l as brair	n tum	our.	Patho	ology	of A	IDS,
						, dengue and TB.								
						measures including antibiotics.								
	CO5	To get l	knowledg	e about m	edico-leg	al aspects of medical biotechnol	logy							
	nit wise deta													
Unit-1				tures = 08		Title of the unit: Definition of								
						rucella, bacillus anthracis, Medio								s,
						Medical Bacteriology: Staphyloc				l ente	roco	ccus,		
Unit				bacilius, 58 tures = 08		a, Shigella, Pseudomonas and N Title of the unit: Medical Viro		ers, vidric).					
						uses, Retroviruses, Medical Myco		Yeast, F	Patho	aenia	: fund	ii. sui	perfi	cial
						es, Systemic Mycoses.				.ge		,, ., .,		erea.
Unit				ures = 08		Title of the unit: Pathology o	f diseases							
Blood	formation,	Anemia	i; Blood lo	oss anemia	, Magalo	blastic anemia, Leukaemia, The	Parts of Bra	ain, Brain	Tun	nours	, Ste	m cel	ls:	
					ology of T	uberculosis, Yellow Fever, Japa	anese Ence	phalitis, l	Deng	gue, A	Acqui	red		
	ine Deficien													
Unit				tures = 08		Title of the unit: Therapies	1 10 11	6 A (11)					,	
Antibi	intics Dose	emothe	ibiotics S	radiothera	py, Hum of Antib	an Gene Therapy. Antibiotics: C iotics, General Principles for use	assification	of Antibio	otics	, Con	ibina	tions	of	
Unit-				tures = 08		Title of the unit: Medico-lega								
						ment, human cloning, foeticide, s		ation. Et	hical	: som	atica	and o	erm	line
						thics committee function.		,						
11. CC)-PO mappii	ng												
COs					Attri	butes		PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1			ıt classifica	ation of path	hogenic m	icrobes, protozoan parasites, and n	nedical	3	1				1	3
CO2	bacteriology Get to know		iral diseas	ses and med	ical myco	logy and preventive measures.		3	1				1	3
002					· ·			3	1				1	3
CO3						ancer, about the brain as well as br	ain tumour.	5	1				-	5
			-	-		ever, dengue and TB.								
CO4			_			ding antibiotics.		3	1				1	3
CO5	To get know	ledge ab	bout medic	co-legal asp	ects of me	dical biotechnology		3	1	1	3	3		3
			3	3: Strong co	ontributi	on, 2: Average contribution , 1: L	ow contribut	tion						
12. B	ooks recomm	nended:	:											

PO-PSO	10	02	03	04	05	96	70	S01	POS2	SO3	PSO4
СО	Р	PO2	Ы	Ы	РО	PO6	PO	PS	РО	PS	PS
CO1	3	1				1	3	3	3	3	
CO2	3	1				1	3	3	3	3	
CO3	3	1				1	3	3	3	3	
CO4	3	1				1	3	3	3	3	
CO5	3	1	1	3	3		3	3	3	3	3
BS305	3	1	1	1	1	3	3	3	3	3	1

Course Articulation Matrix: (Mapping of COs with POs and PSOs)

B. Sc. BIOTECH	NOLOG	GY 3 rd year/ 5 th semeste	r							
1. Name of the De	epartme									
2. Course Name		Genomics, Proteon	nics &	Metabolomics		L		Т]	P
3. Course Code		BS 305				3		1		0
4. Type of Course	e (use tic	k mark)		Core()	Foundation	Course ()	D	epartment	al Electiv	ve (Г)
5. Pre-requisite (i		10+2 with Biology		6. Frequency (use tick marks)	Even ()	Odd (1)	Eithe	er Sem ()	Every S	em ()
	of Lectu	res, Tutorials, Practica	ls							
Lectures = 30			<u> </u>	Tutorials = 10	Practical =					
				signed to make students aware	of Genome s	sequencir	ng, g	enome da	tabases	,
9. COURSE OUT	COME			elop following attributes:						
COURSE		e completion, learners w	ill uev	elop Jouowing autoules.						
OUTCOME (CO)				ATTRIBUTES						
CO1				ing and Sequencing technology						
CO2			-	ne databases, Genome analysis	and Compai	rative gei	nomi	cs Functio	nal gen	omics
CO3		bout basic proteomics								
CO4				gies used in metabolomics						
		U	ns of g	genomics and proteomics in var	ious fields of	life				
10. Unit wise deta										
Unit-1		er of lectures = 08		Title of the unit: Genome see						
0 1	0, 1	1 0,	Solexa	a, SOLiD System. Pros and cons	s of sequenci	ing Maxa	m-G	ilbert sequ	encing,	
Whole shotgun go Unit-2		sequencing er of lectures = 08		Title of the unit: Structural a	nd function	al genon	nice			
			nent a	enomic libraries; Physical mapp				e assembl	v and	
	parative			nics: DNA chips and their use in						า
		r of lectures = 08		Title of the unit: Proteomics						
				matics in proteomics; Proteome						
				D-SDS PAGE. Detection and q						s of
				y. MALDI TOFF and ESI, and th mass spectrometry, Affinity put					em	
Unit-4	Numb	er of lectures = 08		Title of the unit: Metabolomi	CS					
Technologies in r Nutrigenomics	netabolo	omics, Role of Spectro	scopy	, Electrophoretic and Chromato	graphic techr	niques in	met	abolic prof	iling	
Unit-5	Numb	er of lectures = 08		Title of the unit: Application	s					
Applications of ge	enomics	and proteomics in ag	ricultu	e, human health and industry						
11. CO-PO mappir	ng									
COs			Attri			PO1	PO2	PO3 PO4	PO5PO	6 PO7
		nome sequencing and Sec				3	1			1
CO2 Gain knowled genomics	lge abou	t major genome databas	es, gen	ome analysis, comparative and fun	actional	3	1			2
CO3 Learn about l	basic pro	oteomics technology				3	1			1
CO4 Learn about a	the basic	rs of Technologies in met	abolon	nics		3	1			1
CO5 Have knowled	dge of ap	oplications of genomics of	-			3	1			1
		÷	ributi	on, 2: Average contribution , 1: L	ow contribut	ion				
12. Books recomm	nended:									

PO-PSO	5)2)3	74)5	96	70	6	POS2	03	04
СО	P01	PO2	PO3	P04	PO5	PO6	P07	PS	РО	PS	PSO
CO1	3	1					1	3	3	3	
CO2	3	1					2	3	3	3	
CO3	3	1					1	3	3	3	
CO4	3	1					1	3	3	3	
CO5	3	1					1	3	3	3	1
BS305	3	1					2	3	3	3	1

B. Sc. BIOTECH	NOLOG	GY 3 rd year/ 5 th sem	ester											
1. Name of the De	partme						1							
2. Course Name		APPLIED BIOTH	CHNOLO	DGY		L		Т			Р			
3. Course Code		BS 306		I.	1	3		1			0			
4. Type of Course	(use tic	k mark)		Core ()	Foundation (Course ()	D	epartn	ienta	l Ele	ctive	e (J)		
5. Pre-requisite (if	f any)	10+2 with Biology		6. Frequency (use tick marks)	Even ()	Odd (1)	Eith	er Sen	n ()	Every	y Ser	n ()		
	of Lectu	res, Tutorials, Prac	cticals											
Lectures = 30				Tutorials = 10	Practical =									
and target identifi and antioxidants, and biodiversity	ication, Signific	target validation, E cance of IPR; Requ	Bioprospe	se is to make students familiar w cting and conservation: importai of a patentable novelty and Deta	nce of biodive	ersity, Ge	enera	al theo	ry of	free	rad	ical		
· ·		· /	rs will dev	elop following attributes:										
COURSE OUTCOME (CO)				ATTRIBUTES										
				nics and Proteomics and gene e										
		-	-	ery and Designing: Drug and tai	-	ition, targ	jet va	alidatio	n					
			-	nservation: importance of biodiv			بمر م ام	ha.						
	Have knowledge of Significance of IPR; Requirement of a patentable novelty and Detailed, information on patenting													
CO5	CO5 Have knowledge of Significance of IPR; Requirement of a patentable novelty and Detailed, information on patenting biological products and biodiversity. Unit wise detailed content													
	Unit wise detailed content													
Unit-1														
	it-1 Number of lectures = 08 Title of the unit: Genomics and Proteomics													
	it-1 Number of lectures = 08 Title of the unit: Genomics and Proteomics irroduction to genomics, Genome annotation, Human genome project and its application, Introduction to Proteomics: Protein pression and its analysis Proteomics and Proteomics and Proteomics nit-2 Number of lectures = 08 Title of the unit: Drug Discovery and Designing													
		r of lectures = 08	on, woied	cular docking studies and its Ins Title of the unit: Bioprospecti				OLD.						
			matics d	atabases in biological materials.				201100	ofer	ictair	abil	ity		
Unit-4		er of lectures = 0		Title of the unit: Free Radica				55005	01 30	JStan		ity		
				radical mediated damage to lipi			· Not	ural a	otiov	idant	<u> </u>	d		
their applications					-		, INAI	ulai ai	niox	luani	5 ai	iu		
Unit-5		er of lectures = 0		Title of the unit: IPR and Pat										
life forms; Internat on patenting biolo	ional co gical pr		btaining p	relty; Issues related to IPR prote patent; Invention step and prior a						•				
11. CO-PO mappin	ıg		A •			DOI		DOAD			0.6			
COs		1 ~ .	Attri					PO3 P	'04	PO5P	06			
	-			ics and gene expression.		3	1					1		
validation				<i>ag: Drug and target identification,</i>	target	3	1					2		
CO3 Learn about E	O3Learn about Bioprospecting and conservation: importance of biodiversity31133													
CO4 Learn about th	he basic	s of Free Radical Bi	ology: gen	eral theory of free radical and anti	oxidants	3	1					2		
(1)5		gnificance of IPR; R ing biological produ	-	t of a patentable novelty and Detai odiversity	led,	3	1			3	2	3		
ingormation of	n puten			on, 2: Average contribution , 1: L	ow contribut	ion								
12. Books recomm	nended:	0												

PO-PSO	1	PO2	PO3	P04	PO5	PO6	PO7	S01	S2	SO3	PSO4
СО	P01	Я	PC	Ы	д	д	д	РЗ	РС	PS	PS
CO1	3	1					1	3	3	3	
CO2	3	1					2	3	3	3	
CO3	3	1			1	3	3	3	3	3	1
CO4	3	1					2	3	3	3	
CO5	3	1			3	2	3	3	3	3	3
BS306	3	1			1	1	3	3	3	3	1

		GY 3 rd year/ 5 th sem	ester							
		ent: Biosciences			1					
2.Course		TISSUE CULTUR	RELAB		L		Т			P
3.Course		BS307			0		0			6
	Course (use ti		Core(J)		tion Cour		-	1	al Electi	. ,
5.Pre-req	uisite (if any)	10+2 with Biology	6.Frequency(use tick marks)	Even ()	$\mathrm{Odd}(\boldsymbol{J})$	E	Either Se	em ()	Every S	sem()
7.TotalNu	ımberofLectur	es,Tutorials,Practica	hls							
	Lecture	s=00	Tutorials=00]	Practica	l=10		
			e of this course is to develop t	he under	standing	of Basi	ics of Ti	issue a	nd cell	cultur
	E OUTCOME									
•	•	e completion, learner	s will develop following attribut	es:						
	OUTCOME CO)		ATT	RIBUTES	5					
			culture media and its steriliza							
(C O 2		enance of Callus and suspens		-					
(C O 3	Plant propagation the	nrough axillary bud culture and	d adventi	tious bud	culture	Э.			
(C O 4	Isolation of lymphod	cytes from blood samples. In v	itro mair/	itenance of	of helm	ninth pa	rasites.		
(C O 5	In vitro germination	of seeds.							
10.Syllab										
E	2xp-01		culture media and its steriliza	ition						
E	2xp-02	<i>vitro</i> germination								
E	Cxp-03	nitiation and mainte	nance of Callus and suspens	ion Cultu	re					
E		· · · ·	rough axillary bud culture.							
E	Cxp-05		rough adventitious bud cultur	e.						
	Cxp-06		ytes from blood samples.							
	2xp-07		e of helminth parasites.							
	2xp-08	vitro maintenance	e of cell lines.							
11. CO-PO	mapping									
COs		Attrib	utes	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Preparation of	^e plant culture media a	nd its sterilization	3	3	1			1	3
CO2	Initiation and 1 culture	maintenance of Callus	and suspension Culture, cell	3	3	1				3
CO3		tion through axillary l	bud culture and adventitious bud	3	3	1			1	3
	culture.									
CO4		vmphocytes from blood of helminth parasites.	d samples. In vitro	3	3	1				3
CO5		ination of seeds.		3	3	1			3	3
		•	tribution, 2: Average contribution			•	1		l l	

PO-PSO	чO	ЧО	ЧО	Ч О	ЧО	ЧО	ЧО	Ч N	чO	Ч N	ч v
--------	----	----	----	-----	----	----	----	-----	----	-----	-----

CO										
CO1	3	3	1		1	3	3	3	3	
CO2	3	3	1			3	3	3	3	
CO3	3	3	1		1	3	3	3	3	
CO4	3	3	1			3	3	3	3	
CO5	3	3	1		3	3	3	3	3	
BS307	3	3	1		1	3	3	3	3	

B. Sc. BIOTECHNO	LOGY 3 rd year/ 5 th sem	ester										
1.Name of the Depar	ment: Biosciences											
2.Course Name	GENETIC ENGI	NEERING LAB		L		Т]	Р			
3.Course Code	BS308			0		0		(6			
4.Type of Course (us	e tick mark)	Core(<i>J</i>)	Foundat	tion Cour	rse ()	Depa	rtment	al Electi	ive()			
5.Pre-requisite (if an	y) 10+2 with Biology	6.Frequency(use tick marks)	Even ()	Odd (J) I	Either Se	em ()	EveryS	em()			
7.TotalNumberofLec	tures,Tutorials,Practic	als										
Lect	ıres=00	Tutorials=00]	Practica	l=10					
8. COURSE OBJEC	TVES: The objective of	of this course is to develop the	understan	ding of ba	asics of	RDT an	d PCR					
	rse completion, learner	s will develop following attribut	es:									
COURSE OUTCOM (CO)	E	ATT	RIBUTES	5								
CO1												
CO2	Isolate plasmid DN	e plasmid DNA (<i>E. coli</i>)										
CO3	Perform restriction	-										
CO4	Perform Agarose	Gel Electrophoresis										
CO5	Understand basics	s of PCR										
10.Syllabus												
Exp-01		c DNA from bacteria, plant and	d animal t	issue								
Exp-02	olation of plasmid											
Exp-03	striction digestion											
Exp-04	Agarose Gel Electro	•										
Exp-05	monstration of P	CR										
11. CO-PO mapping												
COs	Attributes PO1 PO2 PO3 PO4 PO5 PO6 PO7											
		plant and animal tissues	3	3	1				3			
CO2 Isolate plas	mid DNA (E. coli)		3	3	1				3			
CO3 Perform res	triction digestion of DNA	4	3	3	1				3			
CO4 Perform Ag	arose Gel Electropho	resis	3	3	1				3			
CO5 Understand	basics of PCR		3	3	1				3			
	3: Strong cont	ribution, 2: Average contribut	ion , 1: Lo	w contrib	oution	. 1		. 1				

PO-PSO	5	02)3	04)5	96	70	0	S2	03	04
СО	Ы	Ы	PC	Ъ	Ы	ЪС	Р	PS	РО	PS	PS
CO1	3	3	1				3	3	3	3	
CO2	3	3	1				3	3	3	3	

CO3	3	3	1		3	3	3	3	
CO4	3	3	1		3	3	3	3	
CO5	3	3	1		3	3	3	3	
BS308	3	3	1		3	3	3	3	

		B. Sc. BIOT	ECHNOLOGY 3rd year/ 6th	semester						
1. Na	me of the Depa	rtment: Biosciences								
	ourse Name	BIOINFORMATICS			L		Т		Р	
3. Co	ourse Code	BS 311	[3		1		0	
4. Ty	pe of Course (1	ise tick mark)	Core (J)	Foundation (Course ()	De	partme	ntal El	ectiv	' e ()
	e-requisite (if a	· · · · · · · · · · · · · · · · · · ·	6. Frequency (use tick marks)	Even (\mathcal{I})	Odd ()	Either	Sem()	Ever	ry Se	em ()
		Lectures, Tutorials, Practicals								
	ires = 30		Tutorials = 10	Practical =			(5) (
		CTIVES : The objective of this cou , Sequence Alignment, Data mini			of Appli	cation	of Bioin	forma	tics,	
9. CO	URSE OUTCO	MES (CO):		1103						
		course completion, learners will dev	elop following attributes:							
	OURSE COME (CO)		ATTRIBUTES							
	001	ow basics of Bioinformatics								
	CO2 Ha	ave knowledge of GenBanks, EMI	BL, DDBJ, Swissprot, PIR/NBRF	, IG, GCG, F	AST					
		ow about basics of Sequence Ali	gnment							
		et insight visualization								
	CO5	nderstand basics of Gene finding a ediction, homology modeling.	tools, Phylogenetic tree, Protein	structure vis	ualizatio	n, Prot	ein stru	cture		
10. U	nit wise detaile	ed content								
Unit-1		lumber of lectures = 08	Title of the unit: Introduction							
		troduction, Biological database ty			rotein se	quenc	e datab	ases.		
		<mark>lumber of lectures = 08</mark> DBJ, Swissprot, PIR/NBRF, IG, 0	Title of the unit: Sequence Fo	ormats						
Gend	Balik, Eivide, D		JCG, FASTA							
Unit-		Imber of lectures = 08	Title of the unit: Sequence A							
		Alignment, Multiple Sequence Ali an-Wunsch Algorithm, Scoring M		, Progressive	e Alignmo	ent, Sr	nith-Wa	terma	n	
Unit	-	lumber of lectures = 08	Title of the unit: Data mining							
		mining, Categories of data mining ation of data mining in bioinforma		dge discover	ry, Data i	nodeli	ng, Dat	а		
Unit-		lumber of lectures = 08	Title of the unit: Application							
Introd	luction to Gene	e finding tools, Phylogenetic tree,	Protein structure visualization, F	Protein struct	ure pred	iction,	homolo	gy mo	deli	ng.
)-PO mapping									
COs		Attri	butes		PO1	PO2 P	O3 PO4	PO5	PO6	PO7
CO1	*	f Bioinformatics			3	1				1
CO2		ge of GenBanks, EMBL, DDBJ, Swis	sprot, PIR/NBRF, IG, GCG, FAST		3	1			1	1
CO3		usics of Sequence Alignment			3	1				1
CO4	Get insight to t	o data mining, modeling and Data vi	isualization,		3	1			1	1
CO5		sics of Gene finding tools, Phylogene ction, homology modeling.	etic tree, Protein structure visualiza	tion, Protein	3	1			1	1
		3: Strong contribution	on, 2: Average contribution , 1: L	ow contribut	ion					
12. B	ooks recomme	nded:								
2. A	An Intro. To Ger	nformatics Computer Skill-O Reilly, netic Analysis – Anthony J.F. Griffith cols-Michael Starkey and Ramnath E	ns et al ., 1 st Ed.							

4. Bioinformatics-Methods and Protocols-Stephen Misner & Stephen Krawetz

PO-PSO	5)2)3	D4)5	96	70	PS01	OS2	03	PSO4
СО	P01	P02	PO3	P04	PO5	PO6	P07	PS	РО	PS	PS
CO1	3	1					1	3	3	3	
CO2	3	1				1	1	3	3	3	
CO3	3	1					1	3	3	3	
CO4	3	1				1	1	3	3	3	
CO5	3	1				1	1	3	3	3	
BS311	3	1				1	1	3	3	3	

B. Sc	B. Sc. BIOTECHNOLOGY 3 rd year/ 6 th semester 1. Name of the Department: Biosciences													
1. Na	me of the De	partme	nt: Biosciences											
2. Co	urse Name		BIONANOTECHNOLOGY	7		L		Т		Р)			
3. Co	urse Code		BS 312			3		1		0				
4. Ty	pe of Course	(use tic	k mark)	Core ()	Foundation	Course ()	D	epartment	al Ele	ective	e (/)			
5. Pr	e-requisite (i	f any)	10+2 with Biology	6. Frequency (use tick marks)	Even (\boldsymbol{J})	Odd ()	Eith	er Sem ()	Eve	ry Se	em ()			
		of Lectu	res, Tutorials, Practicals											
	ıres = 30			Tutorials = 10	Practical =									
nano	scale materi	als, Na	nomaterials: Biosensors: Bio	rse is to develop the understandi ophotonics and Bioimaging and F				nology and	d ove	rvie	w of			
	URSE OUTC the successfu		(CO): e completion, learners will dev	elop following attributes:										
	OURSE		I , , , , , , , , , , , , , , , , , , ,											
OUTC	COME (CO)			ATTRIBUTES										
				ology and overview of nanoscal	e materials									
			tand the basics of Nanomate											
			tand the basics of Biosensor											
	CO4 Understand the basics of Biophotonics and Bioimaging CO5 Understand the Principles of toxicology Unit wise detailed content													
	0. Unit wise detailed content													
	10. Unit wise detailed content nit-1 Number of lectures = 08 Title of the unit: Introduction													
	troduction to nanotechnology and overview of nanoscale materials, effect of length scale on properties, introduction to													
biona	ntroduction to nanotechnology and overview of nanoscale materials, effect of length scale on properties, introduction to ionanotechnology, challenges and opportunities associated with biology on the Nanoscale, bionanotechnology systems, biological and medical applications of Bionanomaterials.													
Unit-	2	Numb	er of lectures = 08	Title of the unit: Nanomateria	als									
techn	Image: Momentation of Bionanomaterials. Title of the unit: Nanomaterials Unit-2 Number of lectures = 08 Title of the unit: Nanomaterials Introduction to nanomaterials. DNA based nanostructures. General surface and colloid chemistry, principles, experimental echniques, surface potential, DLVO theory; Characteristics of nanoparticles, chemical speciation of dissolved species, Environmental behaviour of nanoparticles. Unit-3 Number of lectures = 08 Title of the unit: Biosensors													
Unit-	3	Numbe	r of lectures = 08	Title of the unit: Biosensors										
				the sensor surface, Immobilizati cal sensors, Sensor stabilization.		nsor mol	ecul	e, Transdu	iction	of t	he			
Unit-	4	Numb	er of lectures = 08	Title of the unit: Biophotonic	s and Bioim	naging								
basic	physical co	oncepts		ellular level through to whole-bo ues using ionizing and non-ion and SPECT imaging.										
Unit-	5	Numb	er of lectures = 08	Title of the unit: Nanotoxicol	ogy									
				ntal toxicology studies; activation oaccumulation of particles. Biolo					npor 1	ance	e of			
11. CC)-PO mappin	ıg												
COs			Attri			PO1	PO2	PO3 PO4	PO5	PO6	PO7			
CO1			cs of nanotechnology and overv	view of nanoscale materials		3	1				1			
CO2			cs of nanomaterials			3	1				1			
CO3			cs of biosensors			3	1			2	1			
CO4			cs of biophotonics and bioimag	ing		3	1			1	1			
CO5	Understand	the prin	ciples of toxicology			3	1		1	3	1			
			3: Strong contribution	on, 2: Average contribution , 1: Lo	ow contribut	ion								

13. Books recommended:

- 1. Engines of Creation, K E Drexler, Oxford Paperbacks, New York
- 2. Nanosystems: Molecular Machinery, Manufacturing and Computation, K E Drexler, Wiley, ISBN 0471575186
- 3. Our Molecular Future: How Nanotechnology, Robotics, Genetics and Artificial Intelligence Will Transform the World, Prometheus ISBN 1573929921
- 4. Web Resources: <u>www.nanotechweb.org; www.nano.gov; www.nanotec.org.uk</u>
- Nanobiotechnology-Concepts, Applications and Perspectives edited by CM Niemeyer and CA Mirkin, Wiley-VCH ISBN 3-527-30658-7
- 6. NanoBiotechnology Protocols in Methods in Molecular Biology Series Edited by SJ Rosenthal and DW Wright, Humana Press, ISBN: 1-58829-276-2
- 7. Understanding Nanotechnology Scientific American, ISBN: 0446679569 Prey (a novel) by Michael Crichton, ISBN: 0066214122

Course Articulation Matrix: (Mapping of COs with POs and PSOs)

PO-PSO	5	02)3	94)5	96	70	PS01	POS2	03	PSO4
СО	P01	P02	PO3	P04	PO5	PO6	P07	PS	РО	PS	PS
CO1	3	1					1	3	3	3	
CO2	3	1					1	3	3	3	
CO3	3	1				2	1	3	3	3	
CO4	3	1				1	1	3	3	3	
CO5	3	1			1	3	1	3	3	3	1
BS312	3	1			1	2	1	3	3	3	1

B. Sc. BIOTECHNOL	OGY 3 rd year/ 6 th seme	ester												
1.Name of the Departn	nent: Biosciences													
2.Course Name	BIOINFORMATI	CS LAB		L		Т]	Р					
3.Course Code	BS314			0		0			6					
4.Type of Course (use	tick mark)	Core(<i>J</i>)	Foundat	tion Course	0	Departmental Electiv								
5.Pre-requisite (if any)	10+2 with Biology	6.Frequency(use tick marks)	Even (/)	Odd ()	E	ither Se	em ()	EveryS	em()					
7.TotalNumberofLectu	ires,Tutorials,Practica	ls												
Lectur	:es=00	Tutorials=00 Practical=10												
sequences, Simple se	quence comparison u ClustalX & Treeview) n)	f this course is to develop the ising DOTPLOT, Pairwise Se , Protein Structure Visualizati	quence A	lignment, I	FÁST	A & BL	AST s	earch, N	/lultiple					
		rs will develop following attribu	tes:											
COURSE OUTCOME (CO)		ATTRIBUTES												
CO1	Learn about types of	earn about types of sequence databases (Nucleotide & Protein)												
	fnow about Retrieving sequences from the databases and simple sequence comparison using OTPLOT													
CO3	Have knowledge of Pairwise Sequence Alignment (NW and SW approach), FASTA & BLAST search and Multiple Sequence Alignment (ClustalX & Treeview)													
CO4	Have basic knowledge of Protein Structure Visualization (RASMOL, Swiss-PDB Viewer)													
CO5	Have basic knowled	ge about Gene Finding tools (Grail or G	Genscan)										
10.Syllabus														
-		of sequence databases (Nuc	leotide &	Protein)										
Exp-02	<u> </u>	s from the databases												
Exp-03		mparison using DOTPLOT												
Exp-04		Alignment (NW and SW appro	bach)											
Exp-05	FASTA & BLAST sea													
		lignment (ClustalX & Treevie		(a r)										
Exp-07 Exp-08	Gene Finding tools (ualization (RASMOL, Swiss-I Grail or Genscan)												
11. CO-PO mapping														
COs	Attrib	ntes	PO1	PO2	PO3	PO4	PO5	PO6	PO7					
	types of sequence datab		3	3	1	104	105	100	3					
& Protein)									-					
sequence con	parison using DOTPL		3	3	1			1	3					
approach), F. Alignment (C	ASTA & BLAST search lustalX & Treeview)	ce Alignment (NW and SW and Multiple Sequence	3	3	1				3					
CO4 Have basic ki Swiss-PDB V		ucture Visualization (RASMOL,	3	3	1			1	3					
CO5 Have basic kr Genscan)	nowledge about Gene F	inding tools (Grail or	3	3	1			1	3					
	3: Strong contr	ribution, 2: Average contributi	ion , 1: Lo	w contribu	tion									

PO-PSO	6	02	33	74)5	96	70	PS01	POS2	03	PSO4
СО	Р	PO2	PO3	P04	PO5	PO6	PO7	PS	РО	PS	PS
CO1	3	3	1				3	3	3	3	
CO2	3	3	1			1	3	3	3	3	
CO3	3	3	1				3	3	3	3	
CO4	3	3	1			1	3	3	3	3	
CO5	3	3	1			1	3	3	3	3	
BS304	3	1	1			1	3	3	3	3	

B. Sc. BI	OTECHNOLO	GY 3 rd year/ 6 th seme	ster											
	of the Departme													
2.Course	Name	PROJECT & TR	AINING											
3.Course	Code	BS315												
4.Type of	f Course (use ti	ck mark)	Core(1)	Foundat	ion Cour	rse ()	Depa	rtment	al Electi	ive()				
5.Pre-rec	quisite (if any)	10+2 with Biology	6.Frequency(use tick marks)	Even (/)	Odd ()		Either Se	m ()	Every S	Sem()				
7. Total (Credits = 04													
contempo	COURSE OBJECTIVES: The main objective of this course is to acquaint the student with various techniques used in ontemporary research in biotechnology or allied areas.													
			will develop following attribut	· • • •										
COURSI	r the successful course completion, learners will develop following attributes: DURSE OUTCOME (CO) ATTRIBUTES													
		To be able to define a research problem.												
	CO2	To conduct bench work.												
	CO3	To prepare the research report and its oral demonstrations.												
	CO4	To according the eventional languages of techniques with practical explication												
	CO5 To promote lifelong learning													
		out individual projects ent followed by presen	as in house training for <i>3 mont</i> tation and viva.	t h s. The de	tailed pro	ject rej	port/disse	rtation	should t	be				
11. CO-P	O mapping													
COs		Attribu		PO1	PO2	PO3	PO4	PO5	PO6	PO7				
CO1	To be able to	define a research prob	lem.	3	2		1	1		3				
CO2	To conduct be	ench work.		3	3	2	1	3		3				
CO3	To prepare the	research report and it	s oral demonstrations.	3	3	2	1	3		3				
CO4	To coorealate t application	theoretical knowledge	of techniques with practical	3	3					3				
CO5	To promote life	elong learning		3	3					3				
		÷	ibution, 2: Average contribut											
 The diss (i) Introc (ii) Mate (iii) Resu (iv) Disc 	sertation must I luction / Ration rials and Metho ults, ussion and (v)	be similar to the thes ale and Review of L ods, Bibliography.	individually under the superv is style and encompass: iterature be-written, bound form to the		·		oartment							

PO-PSO	6	02	03	54)5	96	70	PS01	S2	03	PSO4
СО	Р	Ы	Ы	P04	PO5	PO6	P07	PS	PO	PS	PS
CO1	3	2		1	1		3	3	3	3	
CO2	3	3	2	1	3		3	3	3	3	3
CO3	3	3	2	1	3		3	3	3	3	
CO4	3	3					3	3	3	3	
CO5		3						3	3	3	1
	3						3				
BS315	3	3	1	1	2		3	3	3	3	1

B. Sc. BIOTECH	INOLO	GY 3 rd year/ 6 th seme	ster											
1.Name of the De	epartme	nt: Biosciences												
2.Course Name		EDUCATIONA	L TOUR											
3.Course Code		BS316												
4.Type of Course	e (use tio	ck mark)	Core(<i>I</i>)	Foundat	ion Cou	rse ()) Departmental Elective							
5.Pre-requisite (i	f any)	10+2 with Biology	6.Frequency(use tick marks)	Even (/)	Odd ()		Either Se	em ()	EveryS	em()				
7. Total Credits = 02														
in the country a industries of na 9. COURSE OUT	and acc ational r FCOMF	quaint the student we pute. The student CS (CO):	ve of this course is to provide t ith state of the art technique/ needs to submit a report a s will develop following attribute	instrument fter comp	ts used	in vari	ous rese							
COURSE OUTC (CO)	COME		ATTRIBUTES											
C01		Develop understanding of state of the art techniques/instruments used in various reputed research institutions. and industries												
CO2		Take part in Group	Take part in Group discussion and learn Team work.											
CO3		Enhance commun	ication and social skills by cor	nmunicati	on with p	peers.								
CO4			le to plan and improve the Te	chnical Re	eport wri	ting sk	ills							
CO5		Have created Intere	est to pursue lifelong learning.											
10. The students	would h	e taken to a national	scientific laboratory or indust	ry for one	week.									
11. CO-PO mapp	oing													
COs		Attribu	tes	PO1	PO2	PO3	PO4	PO5	PO6	PO7				
	-		art technique/instruments used	3	1	1				3				
	-	ted research institution oup discussion and lea		5	1	1				3				
CO2	un in Or	oup discussion and lea	um reum work.	3	2	2	1			3				
CO3 Enhance peers.	се сотт	unication and social s	3	2	2	1			3					
	t shall be writing	e able to plan and imp skills	rove the Technical	3	2					3				
CO5 Have c	Have created Interest to pursue lifelong learning. 2 3 1													
		3: Strong contr	ribution, 2: Average contribution	on , 1: Low	v contri b	oution								

PO-PSO	5	PO2	PO3	P04	PO5	PO6	PO7	PSO1	POS2	PSO3	PSO4	
СО	P01	Ъ	Ъ	Ы	РО	Р	Р	PS	РО	PS	PS	
CO1	3	1	1				3	3	3	3	1	
CO2	3	2	2	1			3	3	3	3		
CO3	3	2	2	1			3	3	3	3		
CO4	3	2					3	3	3	3		
CO5	3			1		2	3	3	3	3	1	
BS316	3	2	1	1		1	3	3	3	3	1	

B.Sc. Biotechnology

Program Articulation Matrix: (Mapping of Courses with POs and PSOs)

PO-PSO	5	02	33	4	15	90	7	5	S2	03	04
Course	P01	PO2	PO3	P04	PO5	PO6	P07	PS01	POS2	PSO3	PSO4
LN104											
MT106											
CS109											
CH112											
BS101	3	1				1	1	3	2		
CH113											
BS102	3	3	1			1	2	3		2	
ES115											
CH114											
BS111	3	1				2	1	3	1		1
BS112	3	1					1	3	1		
BS113	3	1					1	3	2	1	
CH115											
BS114	3	3	1			1	3	3	1	2	
CH-215											
BS-201	3	1					2	3	2	1	
BS-202	3	1					2	3	2	3	
BS-203	3	1					2	3	2		
BS-204	3	1	1	3	3	2	3	3	1	1	3
BS-205	3	3	1			2	3	3	2	2	3
BS-206	3	3	1			1	3	3	2	2	2
BS-211	3	1		1	1	1	3	3	3	2	1
BS-212	3	1					1	3	3		
BS-213	3	1		1	1	3	2	3	3	3	1
BS-214	3	1			1	2	3	3	3	3	1
BS-215	3	1		1	1	3	2	3	2	3	2
BS-216	3	1		1	2	3	2	3	3	3	1
BS-217	3	3	1			3	3	3	3	3	2
BS301	3	1		2	3	1	3	3	3	3	1
BS302	3	1	1	1	1	2	2	3	3	3	1
BS303	3	1		1	1	1	3	3	3	3	1
BS304	3	1	1	1	1	3	3	3	3	3	1

BS305	3	1					2	3	3	3	1
BS306	3	1			1	1	3	3	3	3	1
BS307	3	3	1			1	3	3	3	3	
BS308	3	3	1				3	3	3	3	
BS311	3	1				1	1	3	3	3	
BS312	3	1			1	2	1	3	3	3	1
BM337											
BS314	3	1	1			1	3	3	3	3	
BS-315	3	3	1	1	2		3	3	3	3	1
BS316	3	2	1	1		1	3	3	3	3	1
B.Sc. Biotechnology	3	2	1	1	1	2	2	3	2	2	1